分析 (I)通过Sn=2an-2与Sn-1=2an-1-2(n≥2)作差、整理可知an=2an-1(n≥2),进而可知数列{an}是首项、公比均为2的等比数列,计算即得结论;
(Ⅱ)通过(I)分组求和相加即得结论.
解答 解:(I)∵Sn=2an-2,
∴Sn-1=2an-1-2(n≥2),
两式相减得:an=2an-2an-1,
整理得:an=2an-1(n≥2),
又∵a1=2a1-2即a1=2满足上式,
∴数列{an}是首项、公比均为2的等比数列,
∴数列{an}的通项公式an=2n;
(Ⅱ)由(I)可知bn=an+n=2n+n,
∴Tn=(2+22+…+2n)+(1+2+…+n)
=(2•2n-2)+$\frac{n(n+1)}{2}$
=2n+1+$\frac{1}{2}$n(n+1)-2.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
羊毛颜色 | 每匹需要 ( kg) | 供应量(kg) | |
布料A | 布料B | ||
红 | 4 | 4 | 1400 |
绿 | 6 | 3 | 1800 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
甲 | 6 | 6 | 9 | 9 |
乙 | 7 | 9 | x | y |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com