精英家教网 > 高中数学 > 题目详情
11.已知几何体A-BCED[如图(1)]的三视图如图(2)所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形,已知几何体A-BCED的体积为16.

(1)求实数a的值;
(2)将直角三角形ABD绕斜边AD所在直线旋转一周,求该旋转体的表面积.

分析 (1)由该几何体的三视图知AC⊥面BCED,且EC=BC=AC=4,BD=a,利用几何体A-BCED的体积为16,求实数a的值;
(2)过B作AD的垂线BH,垂足为H,得BH=$\frac{4\sqrt{2}}{3}$,求出圆锥底面周长,两个圆锥的母线长,即可求该旋转体的表面积.

解答 解:(1)由该几何体的三视图知AC⊥面BCED,且EC=BC=AC=4,BD=a,
体积V=$\frac{1}{3}•4•\frac{(a+4)×4}{2}$=16,
解得a=2;
(2)在RT△ABD中,AB=4$\sqrt{2}$,BD=2,AD=6,
过B作AD的垂线BH,垂足为H,得BH=$\frac{4\sqrt{2}}{3}$,
该旋转体由两个同底的圆锥构成,圆锥底面半径为BH=$\frac{4\sqrt{2}}{3}$,
所以圆锥底面周长为C=2π•B$\frac{4\sqrt{2}}{3}$=$\frac{8\sqrt{2}π}{3}$,两个圆锥的母线长分别为4$\sqrt{2}$,2,
故该旋转体的表面积为$S=\frac{1}{2}×\frac{8\sqrt{2}π}{3}×(2+4\sqrt{2})$=$\frac{(32+8\sqrt{2})π}{3}$.

点评 本题考查了圆锥的侧面积公式、积体公式和解三角形等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设f(x)=ax-1,g(x)=bx-1(a,b>0),记h(x)=f(x)-g(x)
(1)若h(2)=2,h(3)=12,当x∈[1,3]时,求h(x)的最大值
(2)a=2,b=1,且方程$|{h(x)}|=t({0<t<\frac{1}{2}})$有两个不相等实根m,n,求mn的取值范围
(3)若a=2,h(x)=cx-1(x>1,c>0),且a,b,c是三角形的三边长,求出x的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.不等式3x+2y-6≥0表示的平面区域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设数集M=$\{x\left|{m≤x≤m+\frac{7}{10}}\right.\}$,N=$\{x\left|{n-\frac{2}{5}≤x≤n}\right.\}$且集合M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列四个结论正确的是(  )
A.lg2•lg3=lg5B.若sinθ=$\frac{1}{2}$,则θ=30°
C.$\root{n}{{a}^{n}}$=aD.logax-logay=loga$\frac{x}{y}$(x>0,y>0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$z=\frac{2}{1+i}$(i为虚数单位),则(  )
A.z的实部为2B.z的虚部为iC.$\overline z=1+i$D.|z|=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow m=(cosx\;,\;-1)$,$\overrightarrow n=(\sqrt{3}sinx\;,\;{cos^2}x)$,设函数$f(x)=\overrightarrow m\;•\;\overrightarrow n$
(1)求f(x)在区间[0,π]上的零点
(2)若锐角△ABC,a=2,$f(A)=\frac{1}{2}$,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合$A=\{x|\frac{x-1}{x+2}≤0\},B=\{x|y=lg(-{x^2}+4x+5)\}$,则A∩(∁RB)=(  )
A.(-2,-1]B.[-2,-1]C.(-1,1]D.[-1,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中在区间[-1,+∞)上为增函数的是(  )
A.y=$\sqrt{x+1}$B.y=(x-1)2C.y=|x-2|D.y=-x+1

查看答案和解析>>

同步练习册答案