精英家教网 > 高中数学 > 题目详情
(本题满分14分)已知四棱锥中,,底面是边长为的菱形,
(I)求证:
(II)设交于点中点,若二面角的正切值为,求的值.


解:(I)因为PA⊥平面ABCD,所以PA⊥BD
又ABCD为菱形,所以AC⊥BD,所以BD⊥平面PAC
从而平面PBD⊥平面PAC.   ……………6分
(II)过O作OH⊥PM交PM于H,连HD
因为DO⊥平面PAC,可以推出DH⊥PM,所以∠OHD为A-PM-D的平面角
,且
从而

所以,即.      ………………………14分

法二:如图,以为原点,所在直线为轴,轴建立空间直角坐标系,则,, …………8分
从而
因为BD⊥平面PAC,所以平面PMO的一个法向量为.  
设平面PMD的法向量为,由

,即 ……………11分
的夹角为,则二面角大小与相等
从而,得

从而,即.                ……………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图示,四棱锥P----ABCD的底面是边长为1的正方形,PA^CD,PA = 1, PD = ,E为PD上一点,PE = 2ED.
(1)  求证:PA ^平面ABCD;
(2)  求二面角D---AC---E的正切值;
(3) 在侧棱PC上是否存在一点F,使得BF // 平面AEC?若存在,指出F点的位置,并证明;若不存在,
说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.如图,在四棱锥P-ABCD中,E为CD上的动点,四边形ABCD为       时,体积VP-AEB恒为定值(写上你认为正确的一个答案即可).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在正方体-中,异面直线所成角的大小为  ▲

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)如图,在三棱柱中,已知
.
(Ⅰ)求直线与底面所成角正切值;
(Ⅱ)在棱(不包含端点)上确定一点的位置,
使得(要求说明理由);
(Ⅲ)在(Ⅱ)的条件下,若,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是不同的直线,是不重合的平面,给出下面三个命题:
1若////.
2若//,//,则//.
3若是两条异面直线,若//,//,//,////.
上面命题中,正确的序号为  (      )
A.1,2B.1,3C.2,3D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体ABCD-A1B1C1D1中,截面A1BD与底面ABCD所成二面角A1-BD-A的正切值等于         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.(本小题满分13分)如图,在正方体中,的中点。
(Ⅰ)在上求一点,使平面
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一个多面体的直观图及三视图如右图所示,MN分别是AFBC的中点.请把下面几种正确说法的序号填在横线上                  .
MN∥平面CDEF

③该几何体的表面积等于
④该几何体的外接球(几何体的所有顶点都在球面上)的体积等于.

查看答案和解析>>

同步练习册答案