A. | $\frac{4030}{4031}$ | B. | $\frac{2014}{4029}$ | C. | $\frac{2015}{4031}$ | D. | $\frac{4030}{4031}$ |
分析 函数f(x)=ax2-1的图象在点A(1,f(1))处的切线l与直线8x-y+2=0平行,可得f′(x)|x=1=(2ax)|x=1=2a=8,解得a.可得f(x)=4x2-1,$\frac{1}{f(n)}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}$$(\frac{1}{2n-1}-\frac{1}{2n+1})$.利用“裂项求和”即可得出.
解答 解:∵函数f(x)=ax2-1的图象在点A(1,f(1))处的切线l与直线8x-y+2=0平行,
∴f′(x)|x=1=(2ax)|x=1=2a=8,
解得a=4.
∴f(x)=4x2-1,
f(n)=4n2-1.
∴$\frac{1}{f(n)}$=$\frac{1}{4{n}^{2}-1}$=$\frac{1}{2}$$(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴数列{$\frac{1}{f(n)}$}的前n项和为Sn=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-1}-\frac{1}{2n+1})]$
=$\frac{1}{2}(1-\frac{1}{2n+1})$
=$\frac{n}{2n+1}$.
则S2015=$\frac{2015}{4031}$.
故选:C.
点评 本题考查了利用导数研究切线、“裂项求和”,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 1022 | B. | 1023 | C. | 1024 | D. | 1025 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {x|0≤x<1} | B. | {x|-1≤x<1} | C. | {x|-1≤x≤0} | D. | {x|0≤x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com