精英家教网 > 高中数学 > 题目详情

【题目】
(1)若处取得极值,确定的值,并求此时曲线在点处的切线方程;
(2)若在[)上为减函数,求的取值范围。

【答案】
(1).

.


(2)

的取值范围为[)。


【解析】
1.对求导得
因为处取得极值,所以.
时,,故从而在点处的切线方程为化简得.
2.由1得,

解得
时,为减函数;
时,为增函数;
时,为减函数;
在[)上为减函数,知解得
的取值范围为[)。
【考点精析】认真审题,首先需要了解复合函数单调性的判断方法(复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”),还要掌握函数的极值与导数(求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱台上、下底面分别是边长为3和6的正方形,,且
底面,点分别在棱上.
(1)若是的中点,证明:;
(2若//平面,二面角的余弦值为,求四面体的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·江苏)某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边界的直线型公路,记两条相互垂直的公路为了l1, l2 , 山区边界曲线为C , 计划修建的公路为l , 如图所示,MNC的两个端点,测得点M到l1, l2 的距离分别为5千米和40千米,点N到l1, l2的距离分别为20千米和2.5千米,以l1, l2所在的直线分别为xy轴,建立平面直角坐标系xOy , 假设曲线C符合函数y=(其中ab为常数)模型.

(1)求ab的值;
(2)设公路l与曲线C相切于P点,P的横坐标为t.
①请写出公路l长度的函数解析式f(t),并写出其定义域;
②当t为何值时,公路l的长度最短?求出最短长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移个单位长度.
(1)求函数的解析式,并求其图像的对称轴方程;
(2)已知关于X的方程内有两个不同的解,
(1)求实数M的取值范围:
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求 f x 的单调区间(2)设曲线 y = f x 与 x 轴正半轴的交点为,曲线在点 P 处的切线方程为 y = ,求证:对于任意的正实数 x ,都有
(1)求的单调区间
(2)设曲线轴正半轴的交点为,曲线在点处的切线方程为 ,求证:对于任意的正实数 ,都有 ;
(3)若方程为实数)有两个正实数根 ,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

(1)当时,解不等式

(2)若关于的方程的解集中恰有一个元素,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F为抛物线E:的焦点,点A(2,m)在抛物线E上,且|AF|=3

(1)求抛物线E的方程;
(2)已知点G(-1,0) , 延长AF交抛物线E于点B证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:,过点D(1,0)且不过点E(2,1)的直线与椭圆C交于A,B两点,直线AE与直线x=3交于点M。
(1)(I)求椭圆C的离心率;
(2)(II)若AB垂直于x轴,求直线BM的斜率。
(3)(III)试判断直线BM与直线DE的位置关系,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:
A组:10,11,12,13,14,15,16
B组:12,13,15,16,17,14,a
假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.
(Ⅰ)求甲的康复时间不少于14天的概率;
(Ⅱ)如果人康复时间的方差相等?(结论不要求证明)

查看答案和解析>>

同步练习册答案