【题目】下列关于函数的叙述正确的为( )
A.函数有三个零点
B.点(1,0)是函数图象的对称中心
C.函数的极大值点为
D.存在实数a,使得函数为增函数
【答案】ABC
【解析】
令函数等于零即可求出零点个数,可判断出选项A;由可得出函数图像关于点(1,0)中心对称,可判断出选项B;由导函数求出函数单调区间,根据函数单调性即可得出最大值点,可判断出选项C;根据导函数判断出是否存在实数a,使得,可判断出选项D.
,令,则或或,
所以函数有三个零点,所以A正确;
,
,
所以,所以函数图像关于点(1,0)对称中心,
所以B正确;求出的导函数,
令,则或,
令,则,
所以函数在和上单调递增,
在上单调递减,所以当时
函数有极大值,所以函数的极大值点为,
所以C正确;假设函数为增函数,
则恒成立,由上可知当或时,
,若要满足,则需在和
上恒成立,图像如下,
如图所示函数在上不可能恒成立,所以不存在这样的实数a,所以D错误.
故选:ABC
科目:高中数学 来源: 题型:
【题目】某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成.
(1)求出甲考生正确完成题数的概率分布列,并计算数学期望;
(2)若考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.试从至少正确完成2题的概率分析比较两位考生的实验操作能力.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,且满足_______.
(Ⅰ)求函数的解析式及最小正周期;
(Ⅱ)若关于的方程在区间上有两个不同解,求实数的取值范围.从①的最大值为,②的图象与直线的两个相邻交点的距离等于,③的图象过点.这三个条件中选择一个,补充在上面问题中并作答.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在①acosB+bcosA=cosC;②2asinAcosB+bsin2A=a;③△ABC的面积为S,且4S=(a2+b2-c2),这三个条件中任意选择一个,填入下面的问题中,并求解,在锐角△ABC中,角A,B,C所对的边分别为a,b,c,函数=2sinωxcosωx+2cos2ωx的最小正周期为π,c为在[0,]上的最大值,求a-b的取值范围.注:如果选择多个条件分别解答,那么按第一个解答计分.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆,椭圆上一点到左焦点的距离的取值范围为.
(1)求椭圆的方程;
(2),,,分别与椭圆相切,且,,,如图,,,,围成的矩形的面积记为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四边形ABCD中,BD为四边形的一条对角线,且,将沿BD向上翻折,当点A在平面BCD内的投影恰好为的外心E时,设直线AE与平面ABC,ACD,ABD的夹角分别为,,,则( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com