精英家教网 > 高中数学 > 题目详情

如图所示的直角坐标系中,一运动物体经过点A(0,9),其轨迹方程是y=ax2+c(a<0),D=(6,7)为x轴上的给定区间.
(1)为使物体落在D内,求a的取值范围;
(2)若物体运动时又经过点P(2,8.1),问它能否落在D内?并说明理由.

解:(1)把点A的坐标(0,9)代入y=ax2+c得c=9,即运动物体的轨迹方程为y=ax2+9.
令y=0,得ax2+9=0,即x2=-
若物体落在D内,应有6<<7,
解得-<a<-
(2)若运动物体又经过点P(2,8.1),
则8.1=4a+9,解得a=-
∴-<-<-
∴运动物体能落在D内.
分析:(1)把点A的坐标代入抛物线方程求得c,则运动物体的轨迹方程可知,令y=0求得抛物线的x轴的交点,进而判断出物体落在D内,应有6<<7,进而求得a的范围.
(2)把点P代入抛物线方程求得a,根据利用(1)中的范围判断出它能否落在D内.
点评:本题主要考查了抛物线的应用,抛物线的方程.考查了学生运用解析几何的知识解决实际问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示的直角坐标系中,一运动物体经过点A(0,9),其轨迹方程是y=ax2+c(a<0),D=(6,7)为x轴上的给定区间.
(1)为使物体落在D内,求a的取值范围;
(2)若物体运动时又经过点P(2,8.1),问它能否落在D内?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的直角坐标系中,B为单位圆在第一象限内圆弧上的动点,A(1,0),设∠AOB=x(0<x<
π
2
)
,过B作直线BC∥OA,并交直线y=-
3
3
x
于点C.
(1)求点C的坐标 (用含x的式子表示);
(2)试求△ABC的面积的最大值,并求出相应x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正三棱锥P-ABC的底面边长为6,侧棱长为
13
.有一动点M在侧面PAB内,它到顶点P的距离与到底面ABC的距离比为2
2
:1

精英家教网
(1)求动点M到顶点P 的距离与它到边AB的距离之比;
(2)在侧面PAB所在平面内建立为如图所示的直角坐标系,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

以O为原点,
OA
所在直线为x轴,建立如图所示的直角坐标系.若
OA
AG
=1
,点A的坐标为(t,0),t∈(0,+∞),点G的坐标为(m,3).
(1)若以O为中心,A为顶点的双曲线经过点G,求当|
OG
|
取最小值时双曲线C的方程;
(2)过点N(0,1)能否作出直线l,使l与双曲线C交于S,T两点,且OS⊥OT?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网轮滑是穿着带滚轮的特制鞋在坚硬的场地上滑行的运动.如图,助跑道ABC是一段抛物线,某轮滑运动员通过助跑道获取速度后飞离跑道然后落到离地面高为1米的平台上E处,飞行的轨迹是一段抛物线CDE(抛物线CDE与抛物线ABC在同一平面内),D为这段抛物线的最高点.现在运动员的滑行轨迹所在平面上建立如图所示的直角坐标系,x轴在地面上,助跑道一端点A(0,4),另一端点C(3,1),点B(2,0),单位:米.
(Ⅰ)求助跑道所在的抛物线方程;
(Ⅱ)若助跑道所在抛物线与飞行轨迹所在抛物线在点C处有相同的切线,为使运动员安全和空中姿态优美,要求运动员的飞行距离在4米到6米之间(包括4米和6米),试求运动员飞行过程中距离平台最大高度的取值范围?
(注:飞行距离指点C与点E的水平距离,即这两点横坐标差的绝对值.)

查看答案和解析>>

同步练习册答案