精英家教网 > 高中数学 > 题目详情
已知椭圆E的离心率为e,两焦点为F1、F2,抛物线C以F1为顶点,F2为焦点,P为两曲线的一个交点,若
|PF1|
|PF2|
=e,则e的值为
3
3
3
3
分析:作PT垂直椭圆准线l于T,由椭圆第二定义知|PF1|:|PT|=e,又|PF1|:|PF2|=e,故|PT|=|PF2|,由抛物线定义知l为抛物线准线,故(-c)-(-
a2
c
)=c-(-c),由此能求出e的值.
解答:解:作PT垂直椭圆准线l于T
则由椭圆第二定义
|PF1|:|PT|=e
又|PF1|:|PF2|=e
故|PT|=|PF2|
由抛物线定义知l为抛物线准线
故F1到l的距离等于F1到F2的距离,
即(-c)-(-
a2
c
)=c-(-c)
得e=
c
a
=
3
3

故答案为:
3
3
点评:本题主要考查椭圆的第二定义和抛物线的基本性质.考查综合运用能力.解题的关键是判断出椭圆和抛物线的准线重合.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆E的离心率为e,两焦点为F1,F2,抛物线C以F1为顶点,F2为焦点,P为两曲线的一个公共点,若
|PF1|
|PF2|
=e,则e的值为(  )
A、
3
3
B、
3
2
C、
2
2
D、
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(A题) (奥赛班做)已知椭圆E的离心率为e,左右焦点分别为F1、F2,抛物线C以F1顶点,F2为焦点,P为两曲线的一个交点,
|PF1|
|PF2|
=e
,则e的值为
3
3
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的离心率为e,两焦点为F1F2,抛物线C以F1为顶点,F2为焦点,P为两曲线的一个交点,若=e,则e的值为_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的离心率为e,两焦点为F1、F2,抛物线C以F1为顶点,F2为焦点,P为两曲线的一个交点,若=e,则e的值为(    )

A.                    B.              C.                D.

查看答案和解析>>

同步练习册答案