精英家教网 > 高中数学 > 题目详情
如图,设椭圆
x2
a2
+
y2
b2
=1(a>b>0)长轴的右端点为A,短轴端点分别为B、C,另有抛物线y=x2+b.
(Ⅰ)若抛物线上存在点D,使四边形ABCD为菱形,求椭圆的方程;
(Ⅱ)若a=2,过点B作抛物线的切线,切点为P,直线PB与椭圆相交于另一点Q,求
|PQ|
|QB|
的取值范围.
(Ⅰ)由四边形ABCD是菱形,得D(a,a2+b),
a2+b=2b
a2+b2
=2b
,解得a=
3
3
b=
1
3

所以椭圆方程为3x2+9y2=1.
(Ⅱ)不妨设P(t,t2+b)(t≠0),
因为y'|x=t=2x|x=t=2t,
所以PQ的方程为y=2t(x-t)+t2+b,即y=2tx-t2+b.
又因为直线PQ过点B,所以-t2+b=-b,即b=
t2
2

所以PQ的方程为y=2tx-
t2
2

联立方程组
y=2tx-
t2
2
x2
4
+
4y2
t4
=1
,消去y,得(t2+64)x2-32tx=0.
所以点Q的横坐标为xQ=
32t
t2+64

所以
|PQ|
|QB|
=
xP-xQ
xQ-xB2
=
t2
32
+1

又t2=2b∈(0,4),所以
|PQ|
|QB|
的取值范围为(1,
9
8
)

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC
(1)求证:BE=2AD;
(2)当AC=3,EC=6时,求AD的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆:
x2
a2
+
y2
b2
=1(a>b>0)

(Ⅰ)若椭圆的一个焦点到长轴的两个端点的距离分别为2+
3
2-
3
,求椭圆的方程;
(Ⅱ)如图,过坐标原点O任作两条互相垂直的直线与椭圆分别交于P、Q和R、S四点.设原点O到四边形PRQS某一边的距离为d,试求:当d=1时
1
a2
+
1
b2
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

平面直角坐标系xOy中,过椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)右焦点的直线x+y-
3
=0交M于A,B两点,P为AB的中点,且OP的斜率为
1
2

(Ⅰ)求M的方程
(Ⅱ)C,D为M上的两点,若四边形ACBD的对角线CD⊥AB,求四边形ACBD面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
a
=(x,0)
b
=(1,y)
,且(
a
+
3
b
)⊥(
a
-
3
b
)

(1)求点P(x,y)的轨迹C的方程,且画出轨迹C的草图;
(2)若直线l:y=kx+m(k≠0)与上述曲线C交于不同的两点A、B,求实数k和m所满足的条件;
(3)在(2)的条件下,若另有定点D(0,-1),使|AD|=|BD|,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xoy中,F是抛物线C:y2=2px(p>0)的焦点,圆Q过O点与F点,且圆心Q到抛物线C的准线的距离为
3
2

(1)求抛物线C的方程;
(2)过F作倾斜角为60°的直线L,交曲线C于A,B两点,求△OAB的面积;
(3)已知抛物线上一点M(4,4),过点M作抛物线的两条弦MD和ME,且MD⊥ME,判断:直线DE是否过定点?说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过椭圆
x2
2
+y2=1
的左焦点F1的直线l交椭圆于A、B两点.
(1)求
AO
AF1
的范围;
(2)若
OA
OB
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足
MF
FB
=
2
-1

(1)求椭圆C的方程;
(2)是否存在直线l,当直线l交椭圆于P、Q两点时,使点F恰为△PQM的垂心.若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,中,,以为直径的半圆分别交于点,若,则=_______.

查看答案和解析>>

同步练习册答案