精英家教网 > 高中数学 > 题目详情
求中心在原点,焦点在x轴上,焦距等于4,且经过点P(3,-2
6
)
的椭圆方程.
考点:椭圆的标准方程
专题:计算题,圆锥曲线的定义、性质与方程
分析:设椭圆方程为
x2
a2
+
y2
b2
=1
(a>b>0),根据题意建立关于a、b的方程组,解出a、b之值,即可得到所求椭圆的方程.
解答: 解:∵椭圆的焦点在x轴,
∴设椭圆方程为
x2
a2
+
y2
b2
=1
(a>b>0),
∵椭圆的焦距为4
∴c=2,焦点坐标为F1(-2,0),F2(2,0),
∵椭圆经过点P(3,-2
6
)

∴根据椭圆的定义,得2a=|PF1|+|PF2|=12,
可得a=6,所以b2=a2-c2=32,
∴椭圆方程为:
x2
36
+
y2
32
=1
点评:本题给出椭圆的焦距和经过的定点坐标,求椭圆的方程.考查了椭圆的定义与标准方程等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}满足an+1=3an+2,a1=1,求通项an=?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
5
,若将椭圆绕它的右焦点按逆时针方向旋转
π
2
后,所得椭圆的一条准线的方程是y=
16
3
,则原来椭圆的方程是(  )
A、
x2
129
+
y2
48
=1
B、
x2
100
+
y2
64
=1
C、
x2
25
+
y2
16
=1
D、
x2
16
+
y2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如果变量x,y满足约束条件
x≥1
x+y≤7
x-y≤-2
,则
2y-1
2x+1
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+y-1=0与椭圆x2+by2=
3
4
相交于两个不同点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n为正数,且直线x-(n-2)y+5=0与直线nx+my-3=0互相垂直,则m+2n的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在锐角△ABC中,A,B,C所对的边分别为a,b,c,ac=3,S△ABC=
3
3
4

(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

2015年国庆节之前,市教育局为高三学生在紧张学习之余,不忘体能素质的提升,要求该市高三全体学生进行一套满分为120分的体能测试,市教育局为了迅速了解学生体能素质状况,按照全市高三测试学生的先后顺序,每间隔50人就抽取一人的抽样方法抽取40分进行统计分析,将这40人的体能测试成绩分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后,得到如图的频率分布直方图.
(1)市教育局在采样中,用的是什么抽样方法?并估计这40人体能测试成绩平均数;
(2)从体能测试成绩在[80,90)的学生中任抽取2人,求抽出的2人体能测试成绩在[85,90)概率.
参考数据:82.5×0.01+87.5×0.02+92.5×0.04+97.5×0.06+102.5×0.05+107.5×0.02=19.4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-4x.
(1)求f(-1)的值;
(2)当x<0时,求f(x)的解析式.

查看答案和解析>>

同步练习册答案