精英家教网 > 高中数学 > 题目详情

设函数.
(1)若时有极值,求实数的值和的极大值;
(2)若在定义域上是增函数,求实数的取值范围.

(1) ,的极大值为;(2).

解析试题分析:(1)由函数的极值可知,对函数求导,将2代入可得,则有,令在区间上递增,在区间上递减,所以的极大值为;(2)在定义域上是增函数,则时恒成立,又,则需恒成立,即恒成立,,可得.
解:(1)∵时有极值,∴有
 ∴, ∴ .
∴有

∴由

在区间上递增,在区间上递减
的极大值为 
(2)若在定义域上是增函数,则时恒成立

恒成立,
恒成立,
为所求.
考点:函数的极值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数的极大值;
(2)若函数的图象与函数的图象有三个不同的交点,求的取值范围;
(3)设,当时,求函数的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数的单调区间;
(2)若当,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为常数,且,函数 
是自然对数的底数).
(1)求实数的值;
(2)求函数的单调区间;
(3)当时,是否同时存在实数),使得对每一个,直线与曲线都有公共点?若存在,求出最小的实数和最大的实数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,( a为常数,e为自然对数的底).
(1)
(2)时取得极小值,试确定a的取值范围;
(3)在(2)的条件下,设的极大值构成的函数,将a换元为x,试判断是否能与(m为确定的常数)相切,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数的图象在点处的切线的倾斜角为,求上的最小值;
(2)若存在,使,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)设函数,曲线在点处的切线方程为
(I)求
(II)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数.
(1)当时,求的极值;
(2)若在区间上单调递增,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,①求函数的单调区间;②求函数的图象在点处的切线方程;
(2)若函数既有极大值,又有极小值,且当时,恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案