1£®ÒÑÖªº¯Êýf£¨x£©=x2-2£¨a+2£©x+a2£¬g£¨x£©=-x2+2£¨a-2£©x-a2+8£®É躯ÊýH1£¨x£©=$\left\{\begin{array}{l}{f£¨x£©£¬f£¨x£©¡Ýg£¨x£©}\\{g£¨x£©£¬f£¨x£©£¼g£¨x£©}\end{array}\right.$£¬H2£¨x£©=$\left\{\begin{array}{l}{g£¨x£©£¬f£¨x£©¡Ýg£¨x£©}\\{f£¨x£©£¬f£¨x£©£¼g£¨x£©}\end{array}\right.$£¬¼ÇH1£¨x£©µÄ×îСֵΪA£¬H2£¨x£©µÄ×î´óֵΪB£¬ÔòA-B£¨¡¡¡¡£©
A£®16B£®-16C£®a2+2a-16D£®a2-2a-16

·ÖÎö ×÷²îf£¨x£©-g£¨x£©=2x2-4ax+2a2-8=2£¨x-a-2£©£¨x-a+2£©£¬´Ó¶ø»¯¼òH1£¨x£©ÓëH2£¨x£©£¬´Ó¶ø½áºÏ¶þ´Îº¯ÊýµÄÐÔÖÊÇó×îÖµ£¬´Ó¶ø½âµÃ£®

½â´ð ½â£ºf£¨x£©-g£¨x£©=2x2-4ax+2a2-8=2£¨x-a-2£©£¨x-a+2£©£¬
¹Êµ±x¡Ýa+2»òx¡Üa-2ʱ£¬f£¨x£©¡Ýg£¨x£©£»
µ±a-2£¼x£¼a+2ʱ£¬f£¨x£©£¼g£¨x£©£¬
¡ßH1£¨x£©=$\left\{\begin{array}{l}{f£¨x£©£¬f£¨x£©¡Ýg£¨x£©}\\{g£¨x£©£¬f£¨x£©£¼g£¨x£©}\end{array}\right.$£¬H2£¨x£©=$\left\{\begin{array}{l}{g£¨x£©£¬f£¨x£©¡Ýg£¨x£©}\\{f£¨x£©£¬f£¨x£©£¼g£¨x£©}\end{array}\right.$£¬
¡àH1£¨x£©=$\left\{\begin{array}{l}{{x}^{2}-2£¨a+2£©x+{a}^{2}£¬x¡Ýa+2»òx¡Üa-2}\\{-{x}^{2}+2£¨a-2£©x-{a}^{2}+8£¬a-2£¼x£¼a+2}\end{array}\right.$£¬
H2£¨x£©=$\left\{\begin{array}{l}{-{x}^{2}+2£¨a-2£©x-{a}^{2}+8£¬a-2¡Üx¡Üa+2}\\{{x}^{2}-2£¨a+2£©x+{a}^{2}£¬x£¾a+2»òx£¼a-2}\end{array}\right.$£¬
½áºÏ¶þ´Îº¯ÊýµÄÐÔÖÊ¿ÉÖª£¬
A=H1£¨a+2£©=£¨a+2£©2-2£¨a+2£©£¨a+2£©+a2=-4a-4£¬
B=H1£¨a-2£©=-£¨a-2£©2+2£¨a-2£©£¨a-2£©-a2+8=-4a+12£¬
¹ÊA-B=-4a-4-£¨-4a+12£©=-16£¬
¹ÊÑ¡B£®

µãÆÀ ±¾Ì⿼²éÁ˷ֶκ¯ÊýµÄÓ¦Óü°¶þ´Îº¯ÊýµÄÓ¦Óã¬Í¬Ê±¿¼²éÁË·ÖÀàÌÖÂÛµÄ˼ÏëÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Ä³µ¥Î»³é½±»î¶¯µÄ¹æÔòÊÇ£º´ú±íͨ¹ý²Ù×÷°´¼üʹµçÄÔ×Ô¶¯²úÉúÁ½¸ö[0£¬1]Ö®¼äµÄ¾ùÔÈËæ»úÊýx£¬y£¬²¢°´ÈçͼËùʾµÄ³ÌÐò¿òͼִÐУ®ÈôµçÄÔÏÔʾ¡°Öн±¡±£¬Ôò¸Ã´ú±íÖн±£»ÈôµçÄÔÏÔʾ¡°Ð»Ð»¡±£¬Ôò²»Öн±£¬Ôò¸Ã´ú±íÖн±µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{1}{3}$C£®$\frac{3}{4}$D£®$\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}£¬x¡Ý0}\\{-{x}^{2}£¬x£¼0}\end{array}\right.$£¬Èô¶ÔÈÎÒâµÄx¡Ý1ÓÐf£¨x+2m£©+mf£¨x£©£¾0ºã³ÉÁ¢£¬ÔòʵÊýmµÄÈ¡Öµ·¶Î§ÊÇm£¾-$\frac{1}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Ö±Ïßx+a2y+6=0ÓëÖ±Ïߣ¨a-2£©x+3ay+2a=0ƽÐУ¬ÔòʵÊýaµÄֵΪ£¨¡¡¡¡£©
A£®3»ò-1B£®0»ò-1C£®-3»ò-1D£®0»ò3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖª¼¯ºÏA={1£¬2}£¬B={x|ax-2=0}£¬ÈôB⊆A£¬ÔòʵÊýaµÄËùÓпÉÄÜÖµ¹¹³ÉµÄ¼¯ºÏΪ£¨¡¡¡¡£©
A£®{1£¬$\frac{1}{2}$}B£®{1£¬2}C£®{0£¬1£¬2}D£®ÒÔÉ϶¼²»¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÈýÀâÖùABC-A1B1C1µÄÀⳤ¶¼ÊÇ1£¬¡ÏBAC=¡ÏBAA1=¡ÏCAA1=60¡ã£¬µãM£¬N·Ö±ðÊÇAB£¬CC1µÄÖе㣬¼Ç$\overrightarrow{AB}$=a£¬$\overrightarrow{AC}$=b£¬$\overrightarrow{A{A}_{1}}$=c£®
£¨1£©ÓÃÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$$\overrightarrow{c}$±íʾÏòÁ¿$\overrightarrow{MN}$£»
£¨2£©Çó$\overrightarrow{MN}$µÄÄ£³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÉèÃüÌâp£ºÊµÊýxÂú×ãx2-4ax+3a2£¼0£¬ÆäÖÐa£¼0£»ÃüÌâq£ºÊµÊýxÂú×ã|2x+7|£¼5£¬ÇÒ?pÊÇ?qµÄ±ØÒª²»³ä·ÖÌõ¼þ£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§Îª[-2£¬-1]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®»¯¼òÏÂÁи÷ʽ
£¨1£©$\frac{\sqrt{3}cos£¨¦Á+30¡ã£©-cos£¨¦Á+120¡ã£©}{cos£¨a-10¡ã£©cos10¡ã+cos£¨¦Á+80¡ã£©cos80¡ã}$£®
£¨2£©$\frac{2cos40¡ã+cos10¡ã£¨1+\sqrt{3}tan10¡ã£©}{sin50¡ãcos35¡ã+cos50¡ãcos55¡ã}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®Èçͼ£¬BCÊÇ°ëÔ²µÄÖ±¾¶£¬OÊÇÔ²ÐÄ£¬OAÊÇÓëBC´¹Ö±µÄÔ²µÄ°ë¾¶£¬PΪ°ëÔ²ÉÏÒ»µã£¨PÓëA¡¢B¡¢C²»Öغϣ©£®¹ýPÏòBC×÷´¹Ïߣ¬´¹×ãΪQ£®OPºÍAQµÄ½»µãΪM£®ÊÔÎÊ£ºµ±PÒƶ¯Ê±£¬MµÄ¹ì¼£ÊÇÔõÑùµÄÇúÏߣ¿ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸