精英家教网 > 高中数学 > 题目详情
(本小题12分)
如图,在中,边上的高,,沿翻折,使得得几何体

(Ⅰ)求证:
(Ⅱ)求点D到面ABC的距离。
(1)根据题意,由于平面.,那么结合性质定理,以及余弦定理得到 ,进而得到证明。
(2)

试题分析:解:(Ⅰ)因为,所以平面.    2分
又因为平面所以
中,,由余弦定理,

因为,所以,即.②          5分
由①,②及,可得平面        .6分
(Ⅱ)过D点作DEBC,垂足为E点
由(Ⅰ)知平面 
∵AC面ABC
∴面ABC面BCD                                      8分
又∵面ABC面BCD=BC
∴DE面ABC
∴DE即为点D到面ABC的距离                           10分
∵在RtBCD中,BC·DE=BD·CD
∴2DE=1×
∴DE=
∴点D到面ABC的距离为                            12分
点评:解决的关键是根据已知的线面的垂直的判定定理和性质定理得到证明,同时能利用做面的垂线得到距离,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中, AB="AC=4," D、E、F分别为PA、PC、BC的中点, BE="3," 平面PBC⊥平面ABC, BE⊥DF.

(Ⅰ)求证:BE⊥平面PAF;
(Ⅱ)求直线AB与平面PAF所成的角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。

(Ⅰ)求四棱锥P-ABCD的体积;
(Ⅱ)当点E在何位置时,BD⊥AE?证明你的结论;
(Ⅲ)若点E为PC的中点,求二面角D-AE-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在三棱锥中,, 点分别在棱上,且

(Ⅰ)求证:平面PAC
(Ⅱ)当的中点时,求与平面所成的角的正弦值;
(Ⅲ)是否存在点使得二面角为直二面角?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。

(Ⅰ)求证:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)
如图,在底面是直角梯形的四棱锥S-ABCD中, 


(1)求四棱锥S-ABCD的体积;
(2)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分为12分)
在四棱锥中,底面,,,,的中点.

(I)证明:
(II)证明:平面
(III)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n是两条不同的直线,是两个不同的平面,则下列命题中正确的是
A.若m∥n,m,则n∥B.若⊥β,m∥,则m⊥β;
C.若⊥β,m⊥β,则m∥D.若m⊥n,m⊥,n⊥β,则⊥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知球面上有四点P,A,B,C,满足PA,PB,PC两两垂直,PA=3,PB=4,PC=5,则该球的表面积是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案