【题目】已知平面向量,,满足,且,则的最大值是______.
【答案】3
【解析】
分别以所在的直线为x,y轴建立直角坐标系,分类讨论:当{||,||}={1,2},||=3,设,则x2+y2=9,则(1+x,2+y),有||的最大值,其几何意义是圆x2+y2=9上点(x,y)与定点(﹣1,﹣2)的距离的最大值;其他情况同理,然后求出各种情况的最大值进行比较即可.
分别以所在的直线为x,y轴建立直角坐标系,
①当{||,||}={1,2},||=3,则,
设,则x2+y2=9,
∴(1+x,2+y),
∴||的最大值,其几何意义是圆x2+y2=9上点(x,y)与定点(﹣1,﹣2)的距离的最大值为3;
②当{||,||}={1,3},||=2,则,x2+y2=4,
∴(1+x,3+y)
∴||的最大值,其几何意义是圆x2+y2=4上点(x,y)与定点(﹣1,﹣3)的距离的最大值为22,
③当{||,||}={2,3},||=1,则,
设,则x2+y2=1
∴(2+x,3+y)
∴||的最大值,其几何意义是在圆x2+y2=1上取
点(x,y)与定点(﹣2,﹣3)的距离的最大值为11
∵,
故||的最大值为3.
故答案为:3
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,PA⊥底面ABC, .点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.
(Ⅰ)求证:MN∥平面BDE;
(Ⅱ)求二面角C-EM-N的正弦值;
(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如表提供了工厂技术改造后某种型号设备的使用年限和所支出的维修费(万元)的几组对照数据:
(年) | 2 | 3 | 4 | 5 | 6 |
(万元) | 1 | 2.5 | 3 | 4 | 4.5 |
参考公式:,.
(1)若知道对呈线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)已知该工厂技术改造前该型号设备使用10年的维修费用为9万元,试根据(1)求出的线性回归方程,预测该型号设备技术改造后,使用10年的维修费用能否比技术改造前降低?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线l的参数方程为(t是参数),在以坐标原点为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为.
(Ⅰ)写出直线l的普通方程、曲线C的参数方程;
(Ⅱ)过曲线C上任意一点A作与直线l的夹角为45°的直线,设该直线与直线l交于点B,求的最值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了了解人们对“延迟退休年龄政策”的态度,某部门从网年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
(I)由频率分布直方图估计年龄的众数和平均数;
(II)由以上统计数据填2×2列联表,并判断是否有95%的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;
参考数据:
(III)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.求抽到的2人中1人是45岁以下,另一人是45岁以上的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线的左、右焦点为,,为右支上的动点(非顶点),为的内心.当变化时,的轨迹为( )
A.直线的一部分B.椭圆的一部分
C.双曲线的一部分D.无法确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】市政府招商引资,为吸引外商,决定第一个月产品免税,某外资厂该第一个月A型产品出厂价为每件10元,月销售量为6万件;第二个月,当地政府开始对该商品征收税率为 ,即销售1元要征收元)的税收,于是该产品的出厂价就上升到每件元,预计月销售量将减少p万件.
(1)将第二个月政府对该商品征收的税收y(万元)表示成p的函数,并指出这个函数的定义域;
(2)要使第二个月该厂的税收不少于1万元,则p的范围是多少?
(3)在第(2)问的前提下,要让厂家本月获得最大销售金额,则p应为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线:,:,则下面结论正确的是( )
A. 把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
B. 把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
C. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线
D. 把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com