精英家教网 > 高中数学 > 题目详情

已知函数.
(1)求证:函数上单调递增;
(2)若函数有四个零点,求的取值范围.

(1)详见解析;(2)实数的取值范围是.

解析试题分析:(1)直接利用导数证明函数上单调递增,在证明过程中注意导函数的单调性;(2)将函数的零点个数问题转化为函数图象的交点个数问题处理,但需注意将式子中的绝对值符号去掉,并借助函数的最值出发,构造有关参数的不等式组,再求解参数的取值范围.
试题解析:(1)

,所以,且函数上单调递增,
故函数上单调递增,,即
故函数上单调递增;
(2)
,当时,,则,所以
,故函数上单调递减,由(1)知,函数上单调递增,
故函数处取得极小值,亦即最小值,即
,则有,则有
即方程与方程的实根数之和为四,
则有,解得
综上所述,实数的取值范围是.
考点:1.函数的单调性;2.函数的零点个数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设函数(其中),且方程的两个根分别为.
(1)当且曲线过原点时,求的解析式;
(2)若无极值点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ) 求函数的单调区间;
(Ⅱ) 当时,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)如果对于任意的总成立,求实数的取值范围;
(Ⅲ)设函数,过点作函数图象的所有切线,令各切点得横坐标构成数列,求数列的所有项之和的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 .
(1)若.
(2)若函数上是增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的导函数是二次函数,当时,有极值,且极大值为2,.
(1)求函数的解析式;
(2)有两个零点,求实数的取值范围;
(3)设函数,若存在实数,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

 
(1)如果处取得最小值,求的解析式;
(2)如果的单调递减区间的长度是正整数,试求的值.(注:区间的长度为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为.
(I)求函数上的最小值;
(Ⅱ)对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的最大值;
(2)若函数没有零点,求实数的取值范围;

查看答案和解析>>

同步练习册答案