精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+c的导函数y=f′(x)的图象如图所示,给出下列三个结论:
①f(x)的单调递减区间是(1,3);
②函数f(x)在x=1处取得极小值;
③a=-6,b=9.正确的结论是(  )
A、①③B、①②C、②③D、①②③
考点:利用导数研究函数的单调性
专题:导数的概念及应用
分析:通过读图得到函数的单调区间,结合导函数的性质分别对①②③进行判断,从而得到答案.
解答: 解:由题意得:函数f(x)在(-∞,1)递增,在(1,3)递减,在(3,+∞)递增,
∴f(x)在x=1处取到极大值,且
f′(1)=3+2a+b=0
f(3)=27+6a+b=0
,解得:a=-6,b=9,
∴①③正确,②错误,
故选:A.
点评:本题考查了导数的应用,考查了函数的单调性,函数的极值问题,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人,现采用分层抽样方法抽取容量为30的样本,则样本中的高级职称人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:y=kx-1(k>0)与抛物线C:x2=4y交于点M,N两点,F为抛物线C的焦点,若|MF|=2|NF|,则实数k的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
y2
3
-x2=1上任一点P向两渐近线做垂线,垂足分别为A、B,则|AB|的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设F1,F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,若在双曲线的右支上存在点P,满足|PF2|=|F1F2|,且原点O到直线PF1的距离等于双曲线的实半轴长,则该双曲线的渐近线方程为(  )
A、4x±3y=0
B、3x±5y=0
C、3x±4y=0
D、5x±3y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)关于点(a,0)和(b,0)对称(a≠b),则函数f(x)的一个周期T=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C经过点(2,2),且与
y2
4
-x2=1具有相同渐进线,则双曲线C的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=|2x-
3
4
|+|2x+
5
4
|,设m,n∈R+,且m+n=1.
(Ⅰ)求不等式f(x)≤
5
2
的解集;
(Ⅱ)求证:
2m+1
+
2n+1
≤2
f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-
a
x+1
-ln(x+1)(a为实常数),若函数f(x)的区间(-1,1)内无极值.则实数a的取值范围为
 

查看答案和解析>>

同步练习册答案