【题目】在平面直角坐标系 中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系. 曲线 的极坐标方程为 , 为曲线 上异于极点的动点,点 在射线 上,且 成等比数列.
(Ⅰ)求点 的轨迹 的直角坐标方程;
(Ⅱ)已知 , 是曲线 上的一点且横坐标为 ,直线 与 交于 两点,试求 的值.
【答案】解:(I)设 , ,
则由 成等比数列,可得 ,
即 , .
又 满足 ,即 ,
∴ ,
化为直角坐标方程为 .
(Ⅱ)依题意可得 ,故 ,即直线 倾斜角为 ,
∴直线 的参数方程为
代入圆的直角坐标方程 ,
得 ,
故 , ,
∴
【解析】本题考查的知识要点:参数方程和极坐标方程与直角坐标方程的转化,直线和圆的极坐标方程、参数方程等基础知识,考查数形结合思想、化归与转化思想等.曲线的极坐标方程定义:如果曲线C上的点与方程f(ρ,θ)=0有如下关系:
(1)曲线C上任一点的坐标(所有坐标中至少有一个)符合方程f(ρ,θ)=0;
(2)以方程f(ρ,θ)=0的所有解为坐标的点都在曲线C上.
则曲线C的方程是f(ρ,θ)=0.
【考点精析】通过灵活运用参数方程的定义,掌握在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数并且对于的每一个允许值,由这个方程所确定的点都在这条曲线上,那么这个方程就叫做这条曲线的参数方程即可以解答此题.
科目:高中数学 来源: 题型:
【题目】某饮料生产企业为了占有更多的市场份额,拟在2017年度进行一系列促销活动,经过市场调查和测算,饮料的年销售量x万件与年促销费t万元间满足 .已知2017年生产饮料的设备折旧,维修等固定费用为3万元,每生产1万件饮料需再投入32万元的生产费用,若将每件饮料的售价定为其生产成本的150%与平均每件促销费的一半之和,则该年生产的饮料正好能销售完.
(1)将2017年的利润y(万元)表示为促销费t(万元)的函数;
(2)该企业2017年的促销费投入多少万元时,企业的年利润最大?
(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2 000元.
(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;
(2)企业乙只依靠该店,最早可望在几年后脱贫?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:“存在x0∈[1,+∞),使得(log23) ≥1”,则下列说法正确的是( )
A.p是假命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
B.p是真命题;¬p“不存在x0∈[1,+∞),使得(log23) <1”
C.p是真命题;¬p“任意x∈[1,+∞),都有(log23)x<1”
D.p是假命题;¬p“任意x∈(﹣∞,1),都有(log23)x<1”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】编号为 的16名篮球运动员在某次训练比赛中的得分记录如下:
运动员编号 | ||||||||
得分 | 15 | 35 | 21 | 28 | 25 | 36 | 18 | 34 |
运动员编号 | ||||||||
得分 | 17 | 26 | 25 | 33 | 22 | 12] | 31 | 38 |
(Ⅰ)将得分在对应区间内的人数填入相应的空格;
区间 | |||
人数 |
(Ⅱ)从得分在区间 内的运动员中随机抽取2人,
(i)用运动员的编号列出所有可能的抽取结果;
(ii)求这2人得分之和大于50的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)= ,若方程f(f(x))=a(a>0)恰有两个不相等的实根x1 , x2 , 则e e 的最大值为( )
A.
B.2(ln2﹣1)
C.
D.ln2﹣1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥 中,底面梯形 , ,平面 平面 , 是等边三角形,已知 , , 是 上任意一点, ,且 .
(1)求证:平面 平面 ;
(2)试确定 的值,使三棱锥 体积为三棱锥 体积的3倍.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com