【题目】在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣3.若以极点O为原点,极轴所在直线为x轴建立平面直角坐标系.
(Ⅰ)求圆C的参数方程;
(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+2y的最大值,并求出此时点P的直角坐标.
【答案】解:(Ⅰ)∵圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣3.
∴直角坐标方程为:x2+y2﹣4x﹣4y+3=0,
即(x﹣2)2+(y﹣2)2=5为圆C的普通方程.
利用同角三角函数的平方关系可得:圆C的参数方程为 (θ为参数).
(Ⅱ)由(Ⅰ)可得,设点P(2+ cosθ,2+ sinθ),
∴x+2y=2+ cosθ+2(2+ )=6+5
设sinα= ,则 ,
∴x+2y=6+5sin(θ+α),
当sin(θ+α)=1时,(x+2y)max=11,此时,θ+α= ,k∈Z.
∴sinθ=cosα= ,cosθ=sinα= .
点P的直角坐标为(3,4)时,x+2y取得最大值11
【解析】(Ⅰ)由圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣3.利用互化公式可得直角坐标方程,再利用同角三角函数的平方关系可得圆C的参数方程.
(Ⅱ)由(Ⅰ)可得,设点P(2+ cosθ,2+ sinθ),可得x+2y=6+5 ,设sinα= ,则 ,可得x+2y=6+5sin(θ+α),再利用三角函数的单调性与值域即可得出最大值.
科目:高中数学 来源: 题型:
【题目】某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种, 方案一:每满200元减50元:
方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)
红球个数 | 3 | 2 | 1 | 0 |
实际付款 | 半价 | 7折 | 8折 | 原价 |
(Ⅰ)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;
(Ⅱ)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2sin(x+φ),且f(0)=1,f′(0)<0,则函数 图象的一条对称轴的方程为( )
A.x=0
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2xlnx﹣x2+2ax,其中a>0.
(1)设g(x)是f(x)的导函数,求函数g(x)的极值;
(2)是否存在常数a,使得x∈[1,+∞)时,f(x)≤0恒成立,且f(x)=0有唯一解,若存在,求出a的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}满足an=3an﹣1+3n﹣1(n∈N* , n≥2), 已知a3=95.
(1)求a1 , a2;
(2)是否存在一个实数t,使得 ,且{bn}为等差数列?若存在,则求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2、3、4,乙袋中红色、黑色、白色小球的个数均为3,某人用左手从甲袋中取球,用右手从乙袋中取球,
(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;
(2)若一次在同一袋中取出两球,如果两球颜色相同则称这次取球获得成功.某人第一次左手先取两球,第二次右手再取两球,记两次取球的获得成功的次数为随机变量X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)的定义在(0,3)上的函数,f(x)的图象如图所示,那么不等式f(x)cosx<0的解集是( )
A.(0,1)∪(2,3)
B.
C.
D.(0,1)∪(1,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中.圆C的参数方程为 (α为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,点D的极坐标为(ρ1 , π).
(1)求圆C的极坐标方程;
(2)过点D作圆C的切线,切点分别为A,B,且∠ADB=60°,求ρ1 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中,过点P(1,0)的直线l的参数方程是 (t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C点的极坐标方程为ρ=﹣4sin(θ﹣ ).
(1)判断直线l与曲线C的位置关系;
(2)若直线l与曲线C交于两点A、B,求|PA||PB|的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com