精英家教网 > 高中数学 > 题目详情

【题目】已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(xn,yn),…

(1)若程序运行中输出的一个数组是(9,t),t的值.

(2)程序结束时,共输出(x,y)的组数为多少?

(3)写出程序框图的程序语句.

【答案】(1)-4;(2)1009;(3)答案见解析.

【解析】试题分析:

(1)利用所给的程序框图运行程序可得当x=9,y=-4,t的值为-4.

(2)结合程序的算法和循环结构的特点可知共输出(x,y)的组数为1009

(3)将所给的程序框图翻译为算法语句,利用循环语句设计相应的程序即可,注意循环语句应设计为DO语句的形式.

试题解析:

(1)由程序框图知,x=1,y=0;

x=3,y=-2;

x=9,y=-4,所以t=-4.

(2)n=1,输出一对,n=3,又输出一对,…,n=2 017,输出最后一对,共输出(x,y)的组数为1 009.

(3)程序框图的程序语句如下:

x=1

y=0

n=1

DO

 PRINT (x,y)

 n=n+2

 x=3*x

 y=y-2

LOOP UNTIL n>2 017

END

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数y=fx)在区间D上是增函数,且函数y=在区间D上是减函数,则称函数fx)是区间D上的“H函数”.对于命题:

①函数fx)=-x+是区间(0,1)上的“H函数”;

②函数gx)=是区间(0,1)上的“H函数”.下列判断正确的是(  )

A. 均为真命题 B. 为真命题,为假命题

C. 为假命题,为真命题 D. 均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(1)若f(x)在[1,e]上的最小值为 ,求a的值;
(2)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx)=ax2+bx,(ab为常数,且a≠0)满足条件f(2-x)=fx-1),且方程fx)=x有两个相等的实根.

(1)求fx)的解析式;

(2)设gx)=kx+1,若Fx)=gx)-fx),求Fx)在[1,2]上的最小值;

(3)是否存在实数mnmn),使fx)的定义域和值域分别为[mn][2m,2n],若存在,求出mn的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在菱形中, ,以4个顶点为圆心的扇形的半径为1,若在该菱形中任意选取一点,该点落在阴影部分的概率为,则圆周率的近似值为( )

A. B. C. D.

【答案】C

【解析】因为菱形的内角和为360°,

所以阴影部分的面积为半径为1的圆的面积,

故由几何概型可知

解得.选C。

型】单选题
束】
12

【题目】已知函数f(x)=,若g(x)=f(x)-a恰好有3个零点,则a的取值范围为(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)从区间内任意选取一个实数,求的概率;

(2)从区间内任意选取一个整数,求的概率

【答案】(1) .(2) .

【解析】试题(1)根据几何概型概率公式,分别求出满足不等式的的区间长度与区间总长度,求比值即可;(2) 区间内共有个数,满足的整数为共有 个,根据古典概型概率公式可得结果.

试题解析: (1)

故由几何概型可知,所求概率为.

(2)

则在区间内满足的整数为56789共有5

故由古典概型可知,所求概率为.

【方法点睛】本题題主要考查古典概型及“区间型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,区间型求与区间有关的几何概型问题关鍵是计算问题题的总区间 以及事件的区间几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本裏件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.

型】解答
束】
18

【题目】已知函数f(x)=ax(a>0且a≠1)的图象过的(-2,16).

(1)求函数f(x)的解析式;

(2)若f(2m+5)<f(3m+3),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

1

2

3

利润

2

3.9

5.5

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测4月和5月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过1000万?

相关公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求证:对,函数存在相同的增区间;

(2)若对任意的 ,都有成立,求正整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sinxcosx+cos2x,x∈R.
(1)把函数f(x)的图象向右平移 个单位,得到函数g(x)的图象,求g(x)在[0, ]上的最大值;
(2)在△ABC中,角A,B,C对应的三边分别为a,b,c,b= ,f( )=1,SABC=3 ,求a和c的值.

查看答案和解析>>

同步练习册答案