精英家教网 > 高中数学 > 题目详情

【题目】将边长分别为、…、、…的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第个、第个、……、第个阴影部分图形.设前个阴影部分图形的面积的平均值为.记数列满足

(1)求的表达式;

(2)写出的值,并求数列的通项公式;

(3)定义,记,且恒成立,求的取值范围.

【答案】1;(2;(3.

【解析】

1)根据题意,分别求出每一个阴影部分图形的面积,即可得到前个阴影部分图形的面积的平均值;(2)依据递推式,结合分类讨论思想,即可求出数列的通项公式;(3)先求出的表达式,再依题意得到,分类讨论不等式恒成立的条件,取其交集,即得所求范围。

1)由题意有,第一个阴影部分图形面积是:;第二个阴影部分图形面积是: ;第三个阴影部分图形面积是:;所以第个阴影部分图形面积是:;故

2)由(1)知,,所以

时,

时,

综上,数列的通项公式为

3)由(2)知,,由题意可得,恒成立,

①当时,,即,所以

②当时,,即

所以

③当时,,即

所以

综上,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程是,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为 (为参数).

(I)写出直线的一般方程与曲线的直角坐标方程,并判断它们的位置关系;

(II)将曲线向左平移个单位长度,向上平移个单位长度,得到曲线,设曲线经过伸缩变换得到曲线,设曲线上任一点为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的分类垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1 000吨生活垃圾,数据统计如下(单位:吨):

厨余垃圾

可回收物

其他垃圾

厨余垃圾

400

100

100

可回收物

30

240

30

其他垃圾

20

20

60

(1)试估计厨余垃圾投放正确的概率P

(2)试估计生活垃圾投放错误的概率;

(3)假设厨余垃圾在厨余垃圾箱,可回收物箱,其他垃圾箱的投放量分别为abc,其中a>0,abc=600. 当数据abc的方差s2最大时,写出abc的值(结论不要求证明),并求出此时s2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+alnx(a>0).
(Ⅰ)当a=2时,试求函数图线过点(1,f(1))的切线方程;
(Ⅱ)当a=1时,若关于x的方程f(x)=x+b有唯一实数解,试求实数b的取值范围;
(Ⅲ)若函数f(x)有两个极值点x1、x2(x1<x2),且不等式f(x1)≥mx2恒成立,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是异面直线,则以下四个命题:存在分别经过直线的两个互相垂直的平面;存在分别经过直线的两个平行平面;经过直线有且只有一个平面垂直于直线经过直线有且只有一个平面平行于直线其中正确的个数有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系己知曲线C1 的方程为ρ=2cosθ+2sinθ,直线 C2 的参数方程为(t 为参数)

Ⅰ)将 C1 的方程化为直角坐标方程;

)P C1 上一动点,求 P 到直线 C2 的距离的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为选派一名学生参加全市实践活动技能竟赛,AB两位同学在学校的学习基地现场进行加工直径为20mm的零件测试,他俩各加工的10个零件直径的相关数据如图所示(单位:mm

AB两位同学各加工的10个零件直径的平均数与方差列于下表;

平均数

方差

A

20

0.016

B

20

s2B

根据测试得到的有关数据,试解答下列问题:

(Ⅰ)计算s2B,考虑平均数与方差,说明谁的成绩好些;

(Ⅱ)考虑图中折线走势情况,你认为派谁去参赛较合适?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆,动点在直线上(),过分别作圆的切线,切点分别为,若满足的点有且只有一个,则实数的值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—4:坐标系与参数方程

在直角坐标系xOy中,设倾斜角为α的直线lt为参数)与曲线Cθ为参数)相交于不同的两点AB

)若α,求线段AB中点M的坐标;

)若|PA·PB|=|OP,其中P2),求直线l的斜率.

查看答案和解析>>

同步练习册答案