精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为以原点为圆心,椭圆的长半轴为半径的圆与直线相切.

1求椭圆的标准方程;

2已知点为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,请说明理由.

【答案】12定点为.

【解析】

试题分析:1由离心率为可得,以原点为圆心,椭圆的长半轴为半径的圆的方程为,其与直线相切,利用点到直线的距离等于半径可得,再由即可求得,方程得解;2假设在轴上存在点,使为定值,设出点的坐标,根据向量数量积的运算得到坐标的关系,设出直线的方程,整理方程组得到坐标的关系并代入,要使其值与的斜率,则分离参数,让其系数为零,即得点坐标.

试题解析:1 由e=即c=a 又因为以原点O为圆心

椭圆C的长半轴长为半径的圆为x2+y2=a2且与直线2x-y+6=0相切

a=代入①得c=2所以b2=a2-c2=2.

椭圆的方程为1.

2 得:1+3k2x2-12k2x+12k2-6=0.

Ax1y1Bx2y2所以x1x2x1·x2

根据题意假设x轴上存在定点Em0使得2···为定值

则有: ·x1-my1·x2-my2x1-m·x2-m+y1y2

x1-m)(x2-m+k2x1-2)(x2-2 k2+1x1x22k2+m)(x1+x24k2+m2

k21·2k2m·4k2m2.

要使上式为定值即与k无关则应使3m212m+10=3m2-6

此时 为定值定点为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校在“普及环保知识节”后,为了进一步增强环保意识,从本校学生中随机抽取了一批学生参加环保基础知识测试.经统计,这批学生测试的分数全部介于75至100之间.将数据分成以下组:第1组,第2组,第3组,第4组,第5组,得到如图所示的频率分布直方图.

(Ⅰ)求a的值;

(Ⅱ)现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生座谈,求每组抽取的学生人数;

(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计随机抽取学生所得测试分数的平均值在第几组(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:

,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将给予补贴.

(1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?

(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】首届世界低碳经济大会在南昌召开,本届大会以节能减排,绿色生态为主题,某单位在国家科研部门的支持下,进行技术攻关,采用了新式艺,把二氧化碳转化为一种可利用的化工产品,已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为200元.

(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?

(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使该单位不亏损?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题对任意实数,不等式恒成立;命题方程表示焦点在轴上的双曲线.

(1)若命题为真命题,求实数的取值范围;

(2)若命题:为真命题,且为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线,过焦点斜率大于零的直线交抛物线于两点,且与其准线交于点

1若线段的长为,求直线的方程;

2上是否存在点,使得对任意直线,直线的斜率始终成等差数列,若存在求点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx=x﹣a2lnx,aR

I若x=e是y=fx的极值点,求实数a的值;

若函数y=fx﹣4e2只有一个零点,求实数a的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题抛物线的焦点在椭圆.命题直线经过抛物线的焦点,且直线过椭圆的左焦点是真命题.

I求直线的方程;

II直线与抛物线相交于,直线,分别切抛物线于,求的交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面 中点.

(1)求异面直线所成角的余弦值;

(2)在线段,且,若直线与平面所成角的正弦值为,求的值

查看答案和解析>>

同步练习册答案