精英家教网 > 高中数学 > 题目详情

【题目】如图,已知的边所在直线的方程为满足,点边所在直线上且满足.

(1)求边所在直线的方程;

(2)求外接圆的方程;

(3)若动圆过点,且与的外接圆外切,求动圆的圆心的轨迹方程.

【答案】(1);(2);(3).

【解析】

试题分析:(1)由已知可得,由边所在直线的方程为,可求直线的斜率,点在直线上,利用直线的点斜式可求;(2)的交点,联立方程可求的坐标,由结合直角三角形的性质可得的外接圆的圆心,进而可求,外接圆的方程可求;(3)由题意可得,即,结合圆锥曲线的定义可求轨迹方程.

试题解析:(1),又上,

边所在直线的方程为,所以直线的斜率为,又因为点

在直线上,所以边所在直线的方程为:,即.

(2)的交点为,所以由

解得点的坐标为斜边上的中点,即为外接圆的圆心,又

从而外接圆的方程为:.

(3)因为动圆过点,所以是该圆的半径,又因为动圆与圆外切,

所以,即.

故点的轨迹是以为焦点,实轴长为的双曲线的左支.

因为实半轴长,半焦距.

所以虚半轴长.

从而动圆的圆心的轨迹方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】计算下列各式:

1

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数的图像经过点,且在区间单调递减,又知函数为偶函数,则关于的不等式的解为 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产AB两种产品,根据市场调查与市场预测,知A产品的利润与投资成正比,其关系如图1B产品的利润与投资的算术平方根成正比,其关系如图2.(注:所示图中的横坐标表示投资金额,单位:万元)

1 2

1)分别将AB两种产品的利润表示为投资的函数关系式;

2)该企业已筹集10万元资金,并全部投入AB两种产品的生产,问:怎样分配这10万元资金,才能使企业获得最大利润,最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线是过点,倾斜角为的直线,以直角坐标系的原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.

(1)求曲线的普通方程和曲线的一个参数方程;

(2)曲线与曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家分析发现“喜欢空间想象”与“性别”有关,某数学兴趣小组为了验证此结论,从全体组员中按分层抽样的方法抽取50名同学(男生30人、女生20人),给每位同学立体几何题、代数题各一道,让各位同学自由选择一道题进行解答,选题情况统计如下表:(单位:人)

立体几何题

代数题

总计

男同学

22

8

30

女同学

8

12

20

总计

30

20

50

(1)能否有97.5%以上的把握认为“喜欢空间想象”与“性别”有关?

(2)经统计得,选择做立体几何题的学生正答率为,且答对的学生中男生人数是女生人数的5倍,现从选择做立体几何题且答错的学生中任意抽取两人对他们的答题情况进行研究,求恰好抽到男女生各一人的概率.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地政府决定建造一批保障房供给社会,缓解贫困人口的住房问题,计划用1 600万元购得一块土地,在该土地上建造10幢楼房的住宅小区,每幢楼的楼层数相同,且每层建筑面积均为1 000平方米,每平方米的建筑费用与楼层有关,第x层楼房每平方米的建筑费用为(kx+800)元(其中k为常数).经测算,若每幢楼为5层,则该小区每平方米的平均综合费用为1 270元.

注:每平方米平均综合费用=.

(1) 求k的值;

(2) 问要使该小区楼房每平方米的平均综合费用最低,应将这10幢楼房建成多少层?此时每平方米的平均综合费用为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药研究所开发的一种药,如果成年人按规定的剂量服用,据监测,服药后每毫升中的含药量(微克)与时间(小时)之间近似满足如图所示的曲线.(当时, .

1)写出第一次服药后之间的函数关系式

2)据进一步测定,每毫升血液中含药量不少于微克时,治疗疾病有效,求服药一次后治疗疾病有效时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上的动点满足到点的距离比到直线的距离小1.

(1)求曲线的方程;

(2)动点在直线上,过点分别作曲线的切线,切点为.直线是否恒过定点,若是,求出定点坐标,若不是,请说明理由.

查看答案和解析>>

同步练习册答案