【题目】如图,棱形的边长为6, ,.将棱形沿对角线折起,得到三棱锥,点是棱的中点, .
(Ⅰ)求证:∥平面;
(Ⅱ)求三棱锥的体积.
【答案】(1)详见解析;(2).
【解析】
试题(1)求证:平面,这是证明线面平行问题,证明线面平行,即证线线平行,可利用三角形的中位线,或平行四边形的对边平行,本题注意到是的中点,点是棱的中点,因此由三角形的中位线可得,,从而可得平面;(2)求三棱锥的体积,由已知,由题意,可得,从而得平面,即平面,因此把求三棱锥的体积,转化为求三棱锥的体积,因为高,求出的面积即可求出三棱锥的体积.
试题解析:(1)证明:因为点是菱形的对角线的交点,
所以是的中点.又点是棱的中点,
所以是的中位线,. 2分
因为平面,平面, 4分
所以平面. 6分
(2)三棱锥的体积等于三棱锥的体积. 7分
由题意,,
因为,所以,. 8分
又因为菱形,所以. 9分
因为,所以平面,即平面10分
所以为三棱锥的高. 11分
的面积为 , 13分
所求体积等于 . 14分
科目:高中数学 来源: 题型:
【题目】已知函数, ,(其中, 为自然对数的底数, ……).
(1)令,若对任意的恒成立,求实数的值;
(2)在(1)的条件下,设为整数,且对于任意正整数, ,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在流行病学调查中,潜伏期指自病原体侵入机体至最早临床症状出现之间的一段时间.某地区一研究团队从该地区500名A病毒患者中,按照年龄是否超过60岁进行分层抽样,抽取50人的相关数据,得到如下表格:
潜伏期(单位:天) | ||||||||
人 数 | 60岁及以上 | 2 | 5 | 8 | 7 | 5 | 2 | 1 |
60岁以下 | 0 | 2 | 2 | 4 | 9 | 2 | 1 |
(1)估计该地区500名患者中60岁以下的人数;
(2)以各组的区间中点值为代表,计算50名患者的平均潜伏期(精确到0.1);
(3)从样本潜伏超过10天的患者中随机抽取两人,求这两人中恰好一人潜伏期超过12天的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价元 | 9 | 9.2 | 9.4 | 9.6 | 9.8 | 10 |
销量件 | 100 | 94 | 93 | 90 | 85 | 78 |
预计在今后的销售中,销量与单价仍然服从这种线性相关关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为( )
(附:对于一组数据,,…,,其回归直线的斜率的最小二乘估计值为.参考数值:,)
A. 9.4元 B. 9.5元 C. 9.6元 D. 9.7元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,B1,B2是椭圆的短轴端点,P是椭圆上异于点B1,B2的一动点.当直线PB1的方程为时,线段PB1的长为.
(1)求椭圆的标准方程;
(2)设点Q满足: .求证:△PB1B2与△QB1B2的面积之比为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,∠A,∠B,∠C所对边分别为a,b,c,且bsinC+2csinBcosA=0.
(1)求∠A大小;
(2)若a=2,c=2,求△ABC的面积S的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆经过点,且和直线相切.
(Ⅰ)求该动圆圆心的轨迹的方程;
(Ⅱ)已知点,若斜率为1的直线与线段相交(不经过坐标原点和点),且与曲线交于两点,求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com