精英家教网 > 高中数学 > 题目详情
3.在△ABC中,D为三角形所在平面内的一点,且$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$;则$\frac{{S}_{△BCD}}{{S}_{△ACD}}$=(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 利用三角形以及向量关系,求解三角形的面积即可.利用三角形以及向量关系,求解三角形的面积即可.

解答 解:由已知,在△ABC中,D为三角形所在平面内一点,且$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$;
点D在平行于AB的中位线上,且为靠近AC边,
从而有S△ABD=$\frac{1}{2}$S△ABC.S△ACD=$\frac{1}{3}$S△ABC
所以S△BCD=(1-$\frac{1}{2}$-$\frac{1}{3}$)S△ABC=$\frac{1}{6}$S△ABC
所以则$\frac{{S}_{△BCD}}{{S}_{△ACD}}$=$\frac{1}{2}$
故选:C.

点评 本题主要考查利用平面向量确定点的位置进而解决平几问题,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以坐标原点O为极点,以x轴正半轴为极轴)中,圆C的圆心在射线$θ=\frac{π}{4}$上,且与直线$ρ=-\frac{1}{sinθ}$相切于点$(\sqrt{2},\frac{7π}{4})$.
(1)求圆C的极坐标方程;
(2)若$α∈[0,\frac{π}{4})$,直线l的参数方程为$\left\{\begin{array}{l}x=2+tcosα\\ y=2+tsinα\end{array}\right.$(t为参数),直线l交圆C于A,B两点,求弦长|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.
(1)若f′(3)=0,求常数a的值;  
(2)若f(x)在(-∞,0)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.下列说法正确的是①④.
①利用样本点的散点图可以直观的判断两个变量的关系是否可以用线性关系表示.
②相关系数-1≤r≤1 且r 越大相关性越强
③用相关指数R2刻画回归方程的拟合效果,R2越小,拟合效果越好.
④残差平方和越小的回归模型,拟合效果越好.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知空间四边形ABCD,链接AC,BD,则$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$为(  )
A.$\overrightarrow{AD}$B.$\overrightarrow{BD}$C.$\overrightarrow{AC}$D.$\overrightarrow{0}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知复数z=$\frac{2+ai}{1+2i}$,其中a为整数,且z在复平面对应的点在第四象限,则a的最大值等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{x^2},0≤x≤1\\ 1,1<x≤2\end{array}\right.$则定积分$\int_0^2{f(x)dx}$=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合U={-2,-1,0,1,2},A={x|x2-x-2=0},则∁UA=(  )
A.{-2,1}B.{-1,2}C.{-2,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)的图象是由函数g(x)=cosx的图象经如下变换得到:现将g(x)图象上所有点的纵坐标伸长到原来的2倍,(横坐标不变),再讲所得的图象向右平移$\frac{π}{2}$个单位长度.
(1)求函数f(x)的解析式,并求其图象的对称轴的方程;
(2)已知关于x的方程f(x)+g(x)=m在[0,2π]内有两个不同的解α,β,
①求实数m的取值范围.
②证明:cos(α-β)=$\frac{2{m}^{2}}{5}$-1.

查看答案和解析>>

同步练习册答案