精英家教网 > 高中数学 > 题目详情
球O的直径SC=4,A,B是该球球面上的两点,AB=2,∠ASC=∠BSC=
π
4
,则棱锥A-SBC的体积为(  )
A、
4
3
B、
8
3
C、
4
2
3
D、
4
3
3
考点:棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:由题意知,在棱锥S-ABC中,△SAC,△SBC都是等腰直角三角形,SC垂直于面ABD,棱锥S-ABC的体积为两个棱锥S-ABD和C-ABD的体积和.
解答: 解:∵球O的直径SC=4,A,B是该球球面上的两点,
AB=2,∠ASC=∠BSC=
π
4

∴由题意知,在棱锥S-ABC中,
△SAC,△SBC都是等腰直角三角形,其中AB=2,SC=4,
SA=AC=SB=BC=2
2

取SC的中点D,则AD⊥SC,BD⊥SC,
∴SC垂直于面ABD,
∴棱锥S-ABC的体积为两个棱锥S-ABD和C-ABD的体积和,
∴棱锥S-ABC的体积V=
1
3
SC•S△ADB=
1
3
×4×
3
=
4
3
3

故选:D.
点评:本题考查棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
sin2x+2sin2x
sin(x+
π
4
)

(1)已知sinα=
1
3
,求f(α)的值;
(2)已知tanα=-
3
4
且0<α<π,求f(2α+
π
6
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的公差为d,若数列{2a1an}为递减数列,则有下列四个命题:
 ①d>0
②d<0
③a1d>0
④a1d<0
请把正确命题的序号填上
 

查看答案和解析>>

科目:高中数学 来源: 题型:

过曲线y=x3上两点P(1,1)和Q(1+△x,1+△y)作曲线的割线,当△x=0.1时,求割线PQ的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}和等比数列{bn}首项都是1,公差和公比都是2,则ab1+ab2+ab4=(  )
A、17B、19C、21D、24

查看答案和解析>>

科目:高中数学 来源: 题型:

设M={正四棱柱},N={长方体},P={直平行六面体},Q={正方体},那么下列关系正确的是(  )
A、Q?M?N?P
B、Q⊆M⊆N⊆P
C、Q?N?M?P
D、Q⊆N⊆M⊆P

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,正方形ABCD在平面直角坐标系内(O为坐标原点),点A,D在x轴上,点B的坐标为(3,3
3
),点F在AD上,且AF=3,过点F且平行于y轴的线段EF与BC交于点E,现将正方形一角折叠使顶点B落在EF上,并与EF上的点G重合,折痕为HI,且知BG=2
3
,B(5,3
3
),点J为折痕HI所在的直线与x轴的交点.
(1)求折痕HI所在直线的函数表达式;
(2)若点P在线段HI上,当△PGI为等腰三角形时,请求出点P的坐标,并写出解答过程;
(3)①如图2,在y轴上有一点Q,其坐标为(0,-2k)作直线JQ另有一直线y=
k
2
x-
k
2
,两直线交于点S,请证明点S在正方形ABCD的AB边所在直线上;
②在①中,在直线y=
k
2
x-
k
2
上有一点R的横坐标为-1,那么问
QS-QR
JS
的值为定值吗?若是定值求出这个值,若不是,则说明理由.
    

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线的两条渐近线均和圆C:(x-1)2+y2=
1
5
相切,且双曲线的右焦点为抛物线y2=4
5
x的焦点,则该双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若曲线C1:y=ax2(a>0)与曲线C2:y=ex存在公共切线,则a的取值范围为(  )
A、[
e2
8
,+∞)
B、(0,
e2
8
]
C、[
e2
4
,+∞)
D、(0,
e2
4
]

查看答案和解析>>

同步练习册答案