精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的离心率为,直线被圆截得的弦长为.

(1)求椭圆的方程;

(2)过点的直线交椭圆两点,在轴上是否存在定点,使得为定值?若存在,求出点的坐标和的值;若不存在,请说明理由.

【答案】(1);(2).

【解析】

(1)由椭圆的离心率为,求得,再由圆的性质和圆的弦长公式,求得,进而可求解椭圆的标准方程;

(2)设的方程:,联立方程组,利用根与系数的关系,求得,再利用向量的数量积的运算和代数式的性质,即可得到结论。

(1)∵椭圆的离心率为,∴,

∵圆的圆心到直线的距离为,

∴直线被圆截得的弦长为

.

解得,故,∴椭圆的方程为.

(2)设

当直线轴不重合时,设的方程:.

,即时,的值与无关,此时.

当直线轴重合且时, .

∴存在点,使得为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,其焦点到准线的距离为2,直线与抛物线交于两点,过分别作抛物线的切线交于点.

(Ⅰ)求的值;

(Ⅱ)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】19的九个数字中取三个偶数四个奇数,试问:

1)能组成多少个没有重复数字的七位数?

2)上述七位数中三个偶数排在一起的有几个?

3)在(1)中的七位数中,偶数排在一起、奇数也排在一起的有几个?

4)在(1)中任意两偶数都不相邻的七位数有几个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高二丈,问:积几何?”其意思为:“今有底面为矩形的屋脊状的锲体,下底面宽3丈,长4丈,上棱长2丈,高2丈,问:它的体积是多少?”(已知1丈为10尺)该锲体的三视图如图所示,则该锲体的体积为( )

A. 12000立方尺B. 11000立方尺

C. 10000立方尺D. 9000立方尺

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的左、右焦点分别为F1F2,离心率为,点A在椭圆E上,∠F1AF260°,△F1AF2的面积为4.

(1)求椭圆E的方程;

(2)过原点O的两条互相垂直的射线与椭圆E分别交于PQ两点,证明:点O到直线PQ的距离为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:

同意

不同意

合计

男生

a

5

女生

40

d

合计

100

(1)求 ad 的值;

(2)根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;

附:

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某社区为了解居民参加体育锻炼情况,随机抽取18名男性居民,12名女性居民对他们参加体育锻炼的情况进行问卷调查.现按参加体育锻炼的情况将居民分成3类:甲类(不参加体育锻炼),乙类(参加体育锻炼,但平均每周参加体育锻炼的时间不超过5个小时),丙类(参加体育锻炼,且平均每周参加体育锻炼的时间超过5个小时),调查结果如下表:

(1)根据表中的统计数据,完成下面列联表,并判断是否有的把握认为参加体育锻炼与否与性别有关?

(2)从抽出的女性居民中再随机抽取2人进一步了解情况,求所抽取的2人中乙类,丙类各有1人的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=ax2+ax1aR).

)当a1时,求fx)>0的解集;

)对于任意xR,不等式fx)<0恒成立,求a的取值范围;

)求关于x的不等式fx)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且经过点.

1)求椭圆的方程;

2)设是椭圆轴正半轴的交点,上是否存在两点,使得是以为直角顶点的等腰直角三角形?若存在,请说明满足条件的的个数;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案