精英家教网 > 高中数学 > 题目详情
17.设命题p:$\frac{m-2}{m-3}$≤$\frac{2}{3}$;命题 q:关于x的不等式x2-4x+m2≤0的解集是空集,若“p∨q”为真命题,“p∧q”为假命题,求实数m的取值范围.

分析 求出命题P与命题q分别成立时,m的范围,利用复合命题的真假,推出p,q有且只有一个为真.然后求解m的范围.

解答 解:由$\frac{m-2}{m-3}$≤$\frac{2}{3}$;得$\frac{m}{m-3}≤0$,∴0≤m<3.
∴p:0≤m<3.
由关于x的不等式x2-4x+m2≤0的解集是空集,得△=16-4m2<0,
∴m>2或m<-2.
∴q:m>2或m<-2.
∵p∨q为真,p∧q为假,
∴p,q有且只有一个为真.
若p真,q假,则0≤m<3且-2≤m≤2,∴0≤m≤2;
若p假,q真,则m<0或m≥3,同时m<-2或m>2,
∴m<-2或m≥3.
∴m的取值范围是(-∞,-2)∪[0,2]∪[3,+∞).

点评 本题考查命题的真假的判断与应用,复合命题的真假的判断,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若2x=9,${log_2}\frac{8}{3}=y$,则x+2y=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C所对的边分别为a,b,c,$3sinAcosB+\frac{1}{2}bsin2A=3sinC$,且$A≠\frac{π}{2}$
(1)求a的值;       
(2)若$A=\frac{2π}{3}$,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=2|x|+x2,若f(a-1)≤3,则a的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}满足an=$\left\{\begin{array}{l}{(\frac{1}{3}-a)n+8,n>8}\\{{a}^{n-7},n≤8}\end{array}\right.$,若对于任意的n∈N*都有an>an+1,则实数a的取值范围是(  )
A.(0,$\frac{1}{3}$)B.(0,$\frac{1}{2}$)C.[$\frac{1}{2}$,1)D.($\frac{1}{3}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SB的中点,且SO=OD,则直线BC与AP所成的角的余弦值为(  )
A.$\frac{\sqrt{33}}{6}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知△ABC的周长为26且点A,B的坐标分别是(-6,0),(6,0),则点C的轨迹方程为$\frac{{x}^{2}}{49}+\frac{{y}^{2}}{13}$=1(x≠±7).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设P,Q分别为直线x-y=0和圆(x-8)2+y2=2上的点,则|PQ|的最小值为(  )
A.2$\sqrt{2}$B.3$\sqrt{2}$C.4$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\overrightarrow{AB}$=(1,2,1),$\overrightarrow{AC}$=(0,1,-2),则平面ABC的一个法向量可以是(  )
A.(5,-2,-1)B.(-6,2,2)C.(3,1,-2)D.(4,-3,1)

查看答案和解析>>

同步练习册答案