精英家教网 > 高中数学 > 题目详情
8.数列{an}是等差数列,若$\frac{a_9}{a_8}<-1$,且它的前n项和Sn有最大值,那么当Sn取得最小正值时,n等于(  )
A.17B.16C.15D.14

分析 等差数列{an}的前n项和Sn有最大值,可得:a1>0,d<0.由于$\frac{a_9}{a_8}<-1$,可得a8(a8+a9)<0,可得-7d<a1<$-\frac{15}{2}d$,再利用前n项和公式即可得出.

解答 解:∵等差数列{an}的前n项和Sn有最大值,
∴a1>0,d<0.
∵$\frac{a_9}{a_8}<-1$,
∴a8(a8+a9)<0,
∴$({a}_{1}+7d)({a}_{1}+\frac{15}{2}d)$<0,
∴-7d<a1<$-\frac{15}{2}d$,
Sn=na1+$\frac{n(n-1)}{2}$d,
∴S15=15(a1+7d)>0,
S16=16$({a}_{1}+\frac{15}{2}d)$<0,
∴当Sn取得最小正值时,n=15.
故选:C.

点评 本题考查了等差数列的通项公式及其前n项和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知二次函数f(x)=x2+2mx+2m+1,
(1)若函数f(x)有两个零点,有一个零点在在区间(-1,0)内,另一个零点在区间(1,2)内,求m
的范围;
(2)若x∈[0,2],求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设复数z满足i(z+1)=-3+2i(i是虚数单位),则|z|=$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=sinx+cosx,且f′(x)=3f(x),则tan2x的值是(  )
A.-$\frac{4}{3}$B.$\frac{4}{3}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.下表给出了从某校500名12岁的男生中用简单随机抽样得出的120人的身高资料(单位:厘米):
区间界限[122,126)[126,130)[130,134)[134,138)[138,142)
人数58102233
区间界限[142,146)[146,150)[150,154)[154,158)
人数201165
(1)列出样本的频率分布表; 
(2)画出频率分布直方图;
(3)估计身高低于134厘米的人数占总人数的百分比和身高在区间[134,146)(厘米)内的人数占总人数的百分比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a>0,且a≠1,函数f(x)的定义域是[-1,1],且满足f(logax)=$\frac{a}{{a}^{2}-1}$(x-$\frac{1}{x}$)
(Ⅰ)求函数f(x);
(Ⅱ)判断函数f(x)的单调性,并证明你的结论;
(Ⅲ)若实数m满足f(m-$\frac{1}{2}$)+f($\frac{1}{4}$-2m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.求值:cos$\frac{5}{4}$π=$-\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知F1和F2是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,O为坐标原点,点P(-1,$\frac{\sqrt{2}}{2}$)在该椭圆上,且PF1⊥x轴.
(1)求椭圆的标准方程;
(2)若过点A(2,0)作直线l交椭圆于不同的两点B,C,证明:不存在直线l,使得|BF2|=|CF2|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,向量$\overrightarrow{m}$=(2,cos2C-1),$\overrightarrow{n}$=(sin2$\frac{A+B}{2}$,1)且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角C的大小;
(2)如果△ABC的外接圆的半径为1,求△ABC的面积的最大值.

查看答案和解析>>

同步练习册答案