(本小题满分14分)若,
,
,
为常
数,且
(Ⅰ)求对所有实数成立的充要条件(用
表示);
(Ⅱ)设为两实数,
且
,若
求证:在区间
上的单调增区间的长度和为
(闭区间
的长度定义为
).
科目:高中数学 来源: 题型:解答题
已知函数满足
,且
有唯
一实数解。
(1)求的表达式 ;
(2)记,且
=
,求数列
的通项公式。
(3)记 ,数列{
}的前
项和为
,是否存在k∈N*,使得
对任意n∈N*恒成立?若存在,求出k的最小值,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com