分析 函数f(x)可化为 t+$\frac{{x}^{3}+tsinx}{{x}^{2}+2+cosx}$,令g(x)=$\frac{{x}^{3}+tsinx}{{x}^{2}+2+cosx}$,则g(-x)=-g(x),设g(x)的最大值为M,最小值为N,则M+N=0,由f(x)的最大值和最小值,解方程即可得到t.
解答 解:f(x)=$\frac{{x}^{3}+t{x}^{2}+\sqrt{2}tsin(x+\frac{π}{4})+2t}{{x}^{2}+2+cosx}$=$\frac{{x}^{3}+t{x}^{2}+\sqrt{2}t(\frac{\sqrt{2}}{2}sinx+\frac{\sqrt{2}}{2}cosx)+2t}{{x}^{2}+2+cosx}$
=$\frac{{x}^{3}+tsinx+t({x}^{2}+cosx+2)}{{x}^{2}+2+cosx}$=t+$\frac{{x}^{3}+tsinx}{{x}^{2}+2+cosx}$,
令g(x)=$\frac{{x}^{3}+tsinx}{{x}^{2}+2+cosx}$,则g(-x)=$\frac{-{x}^{3}-tsinx}{{x}^{2}+2+cos(-x)}$=-g(x),
则g(x)为奇函数,
设g(x)的最大值为M,最小值为N,
则M+N=0,
即有t+M=m,t+N=n,
a+b=2t+m+n=2t=2017,
解得t=$\frac{2017}{2}$.
故答案为:$\frac{2017}{2}$.
点评 本题考查函数的奇偶性及运用,考查三角函数的诱导公式和运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{8}$ | B. | $\frac{3}{16}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com