精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)= 是奇函数,则使f(x)>3成立的x的取值范围为(
A.(﹣∞,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,+∞)

【答案】C
【解析】解:∵f(x)= 是奇函数,
∴f(﹣x)=﹣f(x)

整理可得,
∴1﹣a2x=a﹣2x
∴a=1,
∴f(x)=
∵f(x))= >3
﹣3= >0,
整理可得,
∴1<2x<2
解可得,0<x<1
故选:C
【考点精析】通过灵活运用函数单调性的性质和函数奇偶性的性质,掌握函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集;在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设x取实数,则f(x)与g(x)表示同一个函数的是(
A.f(x)=x,g(x)=
B.f(x)= ,g(x)=
C.f(x)=1,g(x)=(x﹣1)0
D.f(x)= ,g(x)=x﹣3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x的定义域是[0,3],设g(x)=f(2x)﹣f(x+2).
(1)求g(x)的解析式及定义域;
(2)求函数g(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为(
A.
B.
C.
D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017湖南长沙二模】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:

质量指标值

等级

三等品

二等品

一等品

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

1根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?

2在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;

3该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值近似满足,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017北京西城区5月模拟】某大学为调研学生在两家餐厅用餐的满意度,从在两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.

整理评分数据,将分数以10为组距分成6组:,得到餐厅分数的频率分布直方图,和餐厅分数的频数分布表:

定义学生对餐厅评价的“满意度指数”如下:

分数

满意度指数

在抽样的100人中,求对餐厅评价“满意度指数”为0的人数;

从该校在两家餐厅都用过餐的学生中随机抽取1人进行调查,试估计其对餐厅评价的“满意度指数”比对餐厅评价的“满意度指数”高的概率;

如果从两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,程序框图的输出结果为﹣18,那么判断框①表示的“条件”应该是(

A.i>10?
B.i>9?
C.i>8?
D.i>7?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A,B,C,D是直角坐标系中不同的四点,若 (λ∈R), (μ∈R),且 =2,则下列说法正确的是(
A.C可能是线段AB的中点
B.D可能是线段AB的中点
C.C,D可能同时在线段AB上
D.C,D不可能同时在线段AB的延长线上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】扬州市2016—2017学年度第一学期期末检测(本小题满分16分)

如图,椭圆,圆,过椭圆的上顶点的直线:分别交圆、椭圆于不同的两点

(1)若点求椭圆的方程;

(2)若,求椭圆的离心率的取值范围

查看答案和解析>>

同步练习册答案