9£®ÏÂÁÐÃüÌâÕýÈ·µÄ¸öÊýÓУ¨¡¡¡¡£©
¢ÙÈôº¯Êýf£¨x£©=x3+ax2-bx+a2ÔÚx=1´¦Óм«Öµ10£¬Ôòa=4£¬b=11»òa=-3£¬b=-3£»
¢Úµ±x£¾0ÇÒx¡Ù1ʱ£¬ÓÐlnx+$\frac{1}{lnx}$¡Ý2£»
¢ÛÔÚÊýÁÐ{an}ÖУ¬a1=1£¬SnÊÇÆäÇ°nÏîºÍ£¬ÇÒÂú×ãSn+1=$\frac{1}{2}$Sn+2£¬Ôò{an}ÊǵȱÈÊýÁУ»
¢ÜÈôº¯Êýy=f£¨x+$\frac{3}{2}$£©ÎªRÉϵÄÆ溯Êý£¬Ôòº¯Êýy=f£¨x£©µÄͼÏóÒ»¶¨¹ØÓÚµãF£¨$\frac{3}{2}$£¬0£©³ÉÖÐÐĶԳƣ®
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

·ÖÎö Ê×ÏȶÔf£¨x£©Çóµ¼£¬È»ºóÓÉÌâÉèÔÚx=1ʱÓм«Öµ10¿ÉµÃ$\left\{\begin{array}{l}{f¡ä£¨1£©=10}\\{f£¨1£©=10}\end{array}\right.$£¬½âÖ®¼´¿ÉÇó³öaºÍbµÄÖµ£¬Ôò¿ÉÅжϢ٣»
ÓÉ0£¼x£¼1ʱ£¬lnx+$\frac{1}{lnx}$£¼0ÅжϢڴíÎó£»
ÓÉÊýÁеÝÍÆʽ¿ÉµÃ2an+1=an£¨n¡Ý2£©£¬ÔÙÓÉa1=1Çó³ö${a}_{2}=\frac{3}{2}$˵Ã÷¢Û´íÎó£»
Ö±½ÓÓɺ¯ÊýͼÏóµÄƽÒÆ˵Ã÷¢ÜÕýÈ·£®

½â´ð ½â£º¢ÙÈôº¯Êýf£¨x£©=x3+ax2-bx+a2ÔÚx=1´¦Óм«Öµ10£¬
¶Ôº¯Êýf£¨x£©Ç󵼵à f¡ä£¨x£©=3x2+2ax-b£¬
ÓÖ¡ßÔÚx=1ʱf£¨x£©Óм«Öµ10£¬
¡à$\left\{\begin{array}{l}{f¡ä£¨1£©=3+2a-b=0}\\{f£¨1£©=1+a-b+{a}^{2}=0}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=-1}\\{b=1}\end{array}\right.$»ò$\left\{\begin{array}{l}{a=2}\\{b=7}\end{array}\right.$£¬¹Ê¢Ù´íÎó£»
¢Úµ±0£¼x£¼1ʱ£¬ÓÐlnx+$\frac{1}{lnx}$£¼0£¬¹Ê¢Ú´íÎó£»
¢ÛÔÚÊýÁÐ{an}ÖУ¬a1=1£¬SnÊÇÆäÇ°nÏîºÍ£¬ÇÒÂú×ãSn+1=$\frac{1}{2}$Sn+2£¬
È¡n=n-1£¬µÃ2Sn=Sn-1+4£¨n¡Ý2£©£¬Á½Ê½×÷²îµÃ£º2an+1=an£¨n¡Ý2£©£¬
ÓÉSn+1=$\frac{1}{2}$Sn+2£¬ÇÒa1=1ÇóµÃ${a}_{2}=\frac{3}{2}$£¬Ôò{an}²»ÊǵȱÈÊýÁУ¬¹Ê¢Û´íÎó£»
¢ÜÈôº¯Êýy=f£¨x+$\frac{3}{2}$£©ÎªRÉϵÄÆ溯Êý£¬Ôòy=f£¨x+$\frac{3}{2}$£©µÄͼÏó¹ØÓÚ£¨0£¬0£©¶Ô³Æ£¬
Ôòº¯Êýy=f£¨x£©µÄͼÏóÒ»¶¨¹ØÓÚµãF£¨$\frac{3}{2}$£¬0£©³ÉÖÐÐĶԳƣ¬¹Ê¢ÜÕýÈ·£®
¡àÕýÈ·ÃüÌâµÄ¸öÊýÊÇ1¸ö£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÁËÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÁ˺¯ÊýµÄ¼«ÖµµãÓëµ¼ÊýµÄ¹Øϵ£¬ÑµÁ·Á˵ȱÈÊýÁеÄÅж¨·½·¨£¬¿¼²éÁ˺¯ÊýͼÏóµÄƽÒÆ£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª¼¯ºÏA={x|x2+3x+2=0}£¬B={x|ax¡Ý1£¬a£¼0}
£¨1£©µ±a=-$\frac{1}{2}$ʱ£¬ÇóA¡ÉB£»
£¨2£©µ±A⊆Bʱ£¬ÇóaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑ֪ȫ¼¯U={1£¬2£¬3£¬4£¬5}£¬¼¯ºÏM={1£¬2}£¬N={x|x=n2£¬n¡ÊM}£¬ÔòM¡È£¨∁UN£©={1£¬2£¬3£¬5}£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªy=f£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬µ±x¡Ý0ʱ£¬f£¨x£©=x2-2x
£¨1£©Çóf£¨1£©£¬f£¨-2£©µÄÖµ£»
£¨2£©Çóf£¨x£©µÄ½âÎöʽ£»
£¨3£©»­³öy=f£¨x£©¼òͼ£»Ð´³öy=f£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£¨Ö»Ðèд³ö½á¹û£¬²»Òª½â´ð¹ý³Ì£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªMΪÈý½ÇÐÎABCÄÚÒ»µã£¬ÇÒÂú×ã2$\overrightarrow{MA}$+$\overrightarrow{MB}$+$\overrightarrow{MC}$=$\overrightarrow{0}$£¬Èô¡ÏAMB=$\frac{3¦Ð}{4}$£¬¡ÏAMC=$\frac{2¦Ð}{3}$£¬|$\overrightarrow{MB}$|=2$\sqrt{3}$£¬Ôò|$\overrightarrow{MC}$|=2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=cosx£¬x¡Ê£¨$\frac{¦Ð}{2}$£¬3¦Ð£©£¬Èô·½³Ìf£¨x£©=mÓÐÈý¸ö²»Í¬µÄʵÊý¸ù£¬ÇÒÈý¸ö¸ù¦Á£¬¦Â£¬¦Ã£¨°´´ÓСµ½´óÅÅÁУ©Âú×ã¦Â2=¦Á¦Ã£¬ÔòʵÊýmµÄÖµ¿ÉÄÜÊÇ-$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÊýÁÐ{an}ÖУ¬a1=8£¬a4=2ÇÒÂú×ãan+2=2an+1-an£¨n¡ÊN+£©
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÉèSn=|a1|+|a2|+¡­+|an|£¬ÇóSn£®
£¨3£©Éèbn=$\frac{n+1}{£¨n+2£©^{2}£¨10-{a}_{n}£©^{2}}$£¨n¡ÊN+£©£¬ÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬Ö¤Ã÷£º¶ÔÓÚÈÎÒâµÄn¡ÊN+£¬¶¼ÓÐTn£¼$\frac{5}{64}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$ÊÇÁ½¸ö²»¹²ÏßµÄÏòÁ¿£¬ÇÒm$\overrightarrow{a}$-3$\overrightarrow{b}$ÓëÏòÁ¿$\overrightarrow{a}$+£¨2-m£©$\overrightarrow{b}$¹²Ïߣ¬ÇóʵÊýmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{4}$=1£¨a£¾0£©µÄÀëÐÄÂÊΪ$\sqrt{3}$£¬Ôòa=$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸