精英家教网 > 高中数学 > 题目详情
已知棱长为1的正方体ABCD-A1B1C1D1中,E、F分别是B1C1和C1D1的中点,点A1到平面DBEF的距离              
1
如图建立空间直角坐标系,
=(1,1,0),=(0,,1),=(1,0,1)                                          

设平面DBEF的法向量为=(xy,z),则有:
       即    xy=0       
              y+z=0
x=1, y=-1,   z=, 取=(1,-1,),则A1到平面DBEF的距离
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,点分别在上,且
(1)求证:平面
(2)若规定两个平面所成的角是这两个平面所组成的二面角中的锐角(或直角),则在空间有定理:若两条直线分别垂直于两个平面,则这两条直线所成的角与这两个平面所成角相等,试根据上述定理,在时,求平面与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图是一个水平放置的正三棱柱是棱的中点.正三棱柱的主视图如图

(Ⅰ) 图中垂直于平面的平面有哪几个?(直接写出符合要求的平面即可,不必说明或证明)
(Ⅱ)求正三棱柱的体积;
(Ⅲ)证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
一个几何体是由圆柱和三棱锥组合而成,点在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图3所示,其中
(1)求证:
(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体ABCDA1B1C1D1的棱长为2,点E为棱AB的中点,求:
(Ⅰ)D1E与平面BC1D所成角的大小;
(Ⅱ)二面角DBC1C的大小;
(Ⅲ)异面直线B1D1BC1之间的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图直角梯形OABC中,,SO=1,以OC、OA、OS分别为x轴、y轴、z轴建立直角坐标系O-xyz.
(Ⅰ)求的大小(用反三角函数表示);
(Ⅱ)设

②OA与平面SBC的夹角(用反三角函数表示);
③O到平面SBC的距离.
(Ⅲ)设
           
②异面直线SC、OB的距离为              .
(注:(Ⅲ)只要求写出答案).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,平行六面体ABCD—A1B1C1D1中,以顶点A为端点的三条棱长度都为1,且两
两夹角为60°.
(1)求AC1的长;
(2)求BD1与AC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,有以下四个命题:
     ②
   ④
其中,真命题是(   )
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在棱长为1的正四面体ABCD中,E是BC的中点,则 _  ▲   .

查看答案和解析>>

同步练习册答案