精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax2+bx+c(a>0)且f(1)=-
a2

(1)求证:函数f(x)有两个零点;
(2)设x1,x2是函数的两个零点,求|x1-x2|的取值范围.
分析:(1)由函数f(x)=ax2+bx+c(a>0)且f(1)=-
a
2
,可得 c=-
3a
2
-b,计算判别式△大于零,从而得到函数f(x)有两个零点.
(2)设x1,x2是函数的两个零点,则 x1+x2 = -
b
a
x1x2 = 
c
a
,化简|x1-x2|等于
(
b
a
+2)
2
+2
,从而求得|x1-x2|的取值范围.
解答:解:(1)证明:由函数f(x)=ax2+bx+c(a>0)且f(1)=-
a
2
,可得 a+b+c=-
a
2
,即 c=-
3a
2
-b.
故判别式△=b2-4ac=b2-4a(-
3a
2
-b)
=(b+2a)2+2a2>0,函数f(x)有两个零点.
(2)设x1,x2是函数的两个零点,则 x1+x2 = -
b
a
x1x2 = 
c
a

∴|x1-x2|=
x1+x2 )2-4 x1x2 
=
(-
b
a
)
2
-4•
c
a
 
=
b2-4ac
a2
=
b2+4ab+ 6a2
a2
=
(
b
a
)
2
+4•
b
a
+6
=
(
b
a
+2)
2
+2
2

故|x1-x2|的取值范围为[
2
,+∞).
点评:本题主要考查函数的零点的定义,一元二次方程根与系数的关系,求二次函数的最值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案