精英家教网 > 高中数学 > 题目详情

【题目】函数的定义域为,对给定的正数,若存在闭区间,使得函数满足:①内是单调函数;②上的值域为,则称区间级“理想区间”.下列结论错误的是( )

A. 函数)存在1级“理想区间”

B. 函数)不存在2级“理想区间”

C. 函数)存在3级“理想区间”

D. 函数 不存在4级“理想区间”

【答案】D

【解析】A,x0,f(x)=x2[0,1]上是单调增函数,f(x)[0,1]上的值域是[0,1]

∴存在1理想区间,原命题正确;

B,xR,f(x)=ex[a,b]上是单调增函数,f(x)[a,b]上的值域是[ea,eb]

∴不存在2理想区间,原命题正确;

C,因为(0,1)上为增函数。

假设存在[a,b](0,1),使得f(x)[3a,3b]则有,所以命题正确;

D,不妨设a>1,则函数在定义域内为单调增函数,

若存在“4级理想区间”[m,n]

则由m,n是方程tanx=4x,x的两个根,

由于该方程不存在两个不等的根,

故不存在“4级理想区间”[m,n]

D结论错误

本题选择D选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆的右顶点为,左、右焦点分别为,过点

且斜率为的直线与轴交于点, 与椭圆交于另一个点,且点轴上的射影恰好为点

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过点且斜率大于的直线与椭圆交于两点(),若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0
(1)求证:f(x)是奇函数;
(2)若 , 试求f(x)在区间[﹣2,6]上的最值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,且),(其中的导函数).

(Ⅰ)当时,求的极大值点;

(Ⅱ)讨论的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,以坐标原点为极点, 轴的正半轴与极轴建立极坐标系,已知曲线的极坐标方程为,过点且倾斜角为的直线与曲线相交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: ,…, ,得到如图所示的频率分布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;

(3)若从数学成绩在两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与y轴的正半轴相交于点M,且椭圆E上相异两点A、B满足直线MA,MB的斜率之积为

(Ⅰ)证明直线AB恒过定点,并求定点的坐标;

(Ⅱ)求三角形ABM的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,

.

(1)求证:

(2)若平面与平面所成的锐二面角的大小为,求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂拟造一座平面为长方形,面积为三级污水处理池.由于地形限制,长、宽都不能超过,处理池的高度一定.如果池的四周墙壁的造价为中间两道隔墙的造价为,池底的造价为,则水池的长、宽分別为多少米时,污水池的造价最低?最低造价为多少元?

查看答案和解析>>

同步练习册答案