精英家教网 > 高中数学 > 题目详情

已知f(x)=(x-1)2,g(x)=10(x-1),数列{an}满足a1=2,(an+1-an)g(an)+f(an)=0,数学公式
(1)求证:数列{an-1}是等比数列; 
(2)当n取何值时,{bn}取最大值,并求出最大值;
(3)若数学公式数学公式对任意m∈N*恒成立,求实数t的取值范围.

证明:(1)由方程,(an+1-an)g(an)+f(an)=0
得:(an+1-an)×10×(an-1)+(an-1)2=0
整理得(an-1)[10×(an+1-an)+an-1]=0;
显然由a1=2,则an显然不是常数列,且不等于1,所以两边除以an-1;
得10×(an+1-an)+an-1=0.整理后得:10(an+1-1)=9(an-1),
a1-1=1,{an-1}就是首项为1,公比为的等比数列.
解:(2)将an-1=(n-1代入得bn=(n×(n+2).
bn+1-bn=(n+1×(n+3)-(n×(n+2)=(n×
∴{bn}在[1,7]上单调递增,在[8,+∞)上单调递减
∴当n取7或8,{bn}取最大值,最大值为9×(7
(3)设数列{},若对任意m∈N*恒成立,
则数列{}为递增数列,设其通项为cn=为递增数列;
那么对于任意的自然数n,我们都有cn+1>cn 显然我们可以得:
该不等式恒成立条件是左边的比右边的最大值还要大,就行取n=1.求得t>
∴实数t的取值范围为(,+∞)
分析:(1)将an,代入函数f(x)与g(x)的解析式化简得(an-1)[10×(an+1-an)+an-1]=0,所以两边除以an-1,得10(an+1-1)=9(an-1),而a1-1=1,{an-1}就是首项为1,公比为的等比数列.
(2)求出bn的通项公式,然后研究{bn}的单调性,从而求出n取何值时,bn取最大值,以及最大值;
(3)设数列{},若对任意m∈N*恒成立,则数列{}为递增数列,设其通项为cn=为递增数列;那么对于任意的自然数n,我们都有cn+1≥cn,从而求出t的取值范围.
点评:本题主要考查了等比数列的判定,以及数列的最值和数列的单调性的判定,是一道综合题,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f (x)=sin (x+
π
2
),g (x)=cos (x-
π
2
),则下列命题中正确的是(  )
A、函数y=f(x)•g(x)的最小正周期为2π
B、函数y=f(x)•g(x)是偶函数
C、函数y=f(x)+g(x)的最小值为-1
D、函数y=f(x)+g(x)的一个单调增区间是[-
4
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1,x<0
2,x≥0
,g(x)=
3f(x-1)-f(x-2)
2

(1)当1≤x<2时,求g(x);
(2)当x∈R时,求g(x)的解析式,并画出其图象;
(3)求方程xf[g(x)]=2g[f(x)]的解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f (x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

(1)化简f (x)的解析式;
(2)若0≤θ≤π,求θ使函数f (x)为偶函数;
(3)在(2)成立的条件下,求满足f (x)=1,x∈[-π,π]的x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案