精英家教网 > 高中数学 > 题目详情

已知函数.
(1)若曲线在点处的切线与直线垂直,求实数的值.
(2)若,求的最小值
(3)在(Ⅱ)上求证:.

(Ⅰ).
(Ⅱ)函数上单调递减,在上单调递增;
(Ⅲ)当 

解析试题分析:(Ⅰ)的定义域为,根据题意有
所以解得.          4分
(Ⅱ)
时,因为,由,解得
,解得
所以函数上单调递减,在上单调递增;    8分
(Ⅲ)由(2)知,当a>0, 的最小值为
  
 
     13分
考点:本题主要考查导数的几何意义,应用导数研究函数的单调性、最值及不等式的证明。
点评:典型题,本题属于导数应用中的基本问题,通过研究函数的单调性,明确了极值情况。通过研究函数的单调区间、最值情况,得到证明不等式。涉及对数函数,要特别注意函数的定义域。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)求的值
(2)判断上的单调性,并利用定义给出证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数
(1)若是单调函数,求实数的取值范围;
(2)若有两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论的奇偶性;
(2)判断上的单调性并用定义证明。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 (a>0,且a≠1),=.
(1)函数的图象恒过定点A,求A点坐标;
(2)若函数的图像过点(2,),证明:函数(1,2)上有唯一的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,问是否存在实数使上取最大值3,最小值-29,若存在,求出的值;不存在说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)若a=,求f(x)的单调区间;
(Ⅱ)若当≥0时f(x)≥0,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)
已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若,试分别解答以下两小题.
(ⅰ)若不等式对任意的恒成立,求实数的取值范围;
(ⅱ)若是两个不相等的正数,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分12分)设函数
(Ⅰ)求函数的单调递增区间;
(II)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.

查看答案和解析>>

同步练习册答案