精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,O为坐标原点,A、B、C三点满足
OC
=
1
3
OA
+
2
3
OB

(1)求证:A,B,C三点共线;
(2)若A(1,cosx),B(1+sinx,cosx),x∈[0,
π
2
]
f(x)=
OA
OC
-(2m2+
2
3
)•|
AB
|
的最小值为
1
2
,求实数m的值.
分析:(1)由条件求得
AB
 和
AC
,可得
AC
=
2
3
AB
,从而得到
AC
AB
,即A,B,C三点共线.
(2)先求出
AB
=(sinx,0)
,从而求得f(x)=1+sinx+cos2x-(2m2+
2
3
)sinx
,由x的范围求得sinx∈[0,1],利用二次函数的性质求出f(x)的最小值,即可求得实数m的值.
解答:解:∵(1)
OC
=
1
3
OA
+
2
3
OB
,∴
AC
=
OC
-
OA
=-
2
3
OA
+
2
3
OB
AB
=
OB
-
OA
,…(1分)
AC
=
2
3
AB
,…(4分)∴
AC
AB
,即A,B,C三点共线.  …(5分)
(2)由A(1,cosx),B(1+sinx,cosx),x∈[0,
π
2
]
,…(6分)
AB
=(sinx,0)
,∴|
AB
|=
sin2x
=sinx
,…(7分)
OC
=
1
3
OA
+
2
3
OB
=(1+
2
3
sinx,cosx),
从而 f(x)=
OA
OC
-(2m2+
2
3
)•|
AB
|=1+
2
3
sinx+cos2x-(2m2+
2
3
)sinx
 
=-sin2x-2m2 sinx+2=-(sinx+m22+m4+2.…(10分)
x∈[0,
π
2
]
,则t=sinx∈[0,1],f(x)=g(t)=-(t+m22+m4+2.
由于-m2≤0,∴g(t)=-(t+m22+m4+2 在[0,1]上是减函数,
当t=1,即x=
π
2
时,f(x)=g(t)取得最小值为-(1+m2)2+m4+2=
1
2
,解得m=±
1
2

综上,m=±
1
2
. …(14分)
点评:本题主要考查两个向量共线的条件,两个向量的数量积公式的应用,两个向量的坐标形式的运算,二次函数的性质应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为:pcos(θ-
π3
)=1
,M,N分别为曲线C与x轴,y轴的交点,则MN的中点P在平面直角坐标系中的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
π
2
2
)
,且|
AC
|=|
BC
|

(1)求角θ的值;
(2)设α>0,0<β<
π
2
,且α+β=
2
3
θ
,求y=2-sin2α-cos2β的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,如果x与y都是整数,就称点(x,y)为整点,下列命题中正确的是
 
(写出所有正确命题的编号).
①存在这样的直线,既不与坐标轴平行又不经过任何整点
②如果k与b都是无理数,则直线y=kx+b不经过任何整点
③直线l经过无穷多个整点,当且仅当l经过两个不同的整点
④直线y=kx+b经过无穷多个整点的充分必要条件是:k与b都是有理数
⑤存在恰经过一个整点的直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,下列函数图象关于原点对称的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,以点(1,0)为圆心,r为半径作圆,依次与抛物线y2=x交于A、B、C、D四点,若AC与BD的交点F恰好为抛物线的焦点,则r=
 

查看答案和解析>>

同步练习册答案