精英家教网 > 高中数学 > 题目详情
已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,-cosωx),(ω>0)
,函数f(x)=
a
b
+
1
2
的图象的两相邻对称轴间的距离为
π
4

(1)求ω;
(2)若x∈(0,
5
12
π)
时,求函数f(x)的单调递增区间;
(3)若cosx≥
1
2
,x∈(0,π)
,且f(x)=m有且仅有一个实根,求实数m的值.
分析:(1)由已知中向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,-cosωx),(ω>0)
,函数f(x)=
a
b
+
1
2
,我们易求出函数的解析式,由函数f(x)=
a
b
+
1
2
的图象的两相邻对称轴间的距离为
π
4
,我们易得函数的最小正周期为
π
2
,由公式求出ω
(2)由正弦函数的单调性,令2kπ-
π
2
≤4x-
π
6
≤2kπ+
π
2
,k∈
z,解出x的取值范围与所给的区间求交既得.
(3)由cosx≥
1
2
,x∈(0,π)
,解出x的取值范围,作出符合条件的f(x)的图象,变f(x)=m有且仅有一个实根的问题为两个函数的图象有一个交点的问题,由图即可得到参数的取值范围.
解答:精英家教网解:由题意,f(x)=
3
sinωx•cosωx-cos2ωx+
1
2

=
3
2
sin2ωx-
1+cos2ωx
2
+
1
2

=
3
2
sin2ωx-
1
2
cos2ωx

=sin(2ωx-
π
6
)

(1)∵两相邻对称轴间的距离为
π
4
T=
=
π
2
,∴ω=2
(2)由(1)知f(x)=sin(4x-
π
6
)
,令2kπ-
π
2
≤4x-
π
6
≤2kπ+ 
π
2
,k∈
z,解得
2
-
π
12
≤ x≤
2
+
π
6
,k∈z
x∈(0,
5
12
π)
,故函数的单调递增区间是(0,
π
6
)

(3)∵cosx≥
1
2
,又因为余弦函数在(0,π)上是减函数,∴x∈(0,
π
3
]

f(x)=
a
b
+
1
2
=sin(4x-
π
6
)
,g(x)=m,在同一直角坐标系中
作出两个函数的图象,可知:m=1或m=-
1
2
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,求解的重点是从图象观察出函数的周期、最值、及点的坐标等几何特征来,然后根据相关的公式求出解析式中的参数,本题中考查了转化思想的运算,如第三小问中将方程有一个根的问题转化为两个函数的图象有一个交点的问题,从而可以用图象法解决问题,恰当的转化可以迅速达成问题的求解.本题运算量较大,求解时要严谨,避免马虎导致运算出错.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(
3
sinθ,1),
b
=(1,cosθ)
,则
a
b
的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
sinωx,cosωx)
b
=(cosωx,-cosωx),ω>0,记函数f(x)=
a
b
,已知f(x)的最小正周期为
π
2

(1)求ω的值;
(2)设△ABC的三边a、b、c满足b2=ac,且边b所对的角为x,求此时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
sin(π-ωx),cosωx),
b
=(cosωx,-cosωx)
,函数f(x)=
a
b
+
1
2
(ω>0)的图象的两相邻对称轴间的距离为
π
4

(1)求ω值;
(2)若cosx≥
1
2
,x∈(0,π)
,且f(x)=m有且仅有一个实根,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
sinωx,cosωx),
b
=(cosωx,cosωx),ω>0
,记函数f(x)=
a
b

若函数f(x)的最小正周期为π.
(1)求ω的值;
(2)当0<x≤
π
3
时,试求f(x)的值域;
(3)求f(x)在[0,π]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
sinωx,cosωx)
b
=(cosωx,cosωx)
其中ω>0,记函数f(x)=
a
b
,已知f(x)的最小正周期为π.
(1)求f(x)的解析式;
(2)说出由y=sinx的图象经过如何的变换可得到f(x)的图象;
(3)当0<x<
π
3
时,试求f(x)的值域.

查看答案和解析>>

同步练习册答案