精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax2+(1﹣2a)x﹣lnx(a∈R).
(1)求函数f(x)在区间[1,2]上的最大值;
(2)若A(x1 , y1),B(x2 , y2),C(x0 , y0)是函数f(x)图象上不同的三点,且x0= ,试判断f′(x0)与 之间的大小关系,并证明.

【答案】
(1)解:f′(x)=2ax+1﹣2a﹣ = .(x∈[1,2]).

①a=0,f′(x)= ,可得f′(x)≥0,∴函数f(x)在x∈[1,2]上单调递增,因此x=2时,函数f(x)取得最大值,

f(2)=2﹣ln2.

②a≠0时,f′(x)=

a>0时,可得f′(x)≥0,∴函数f(x)在x∈[1,2]上单调递增,因此x=2时,函数f(x)取得最大值,f(2)=2﹣ln2.

时, >2,可得f′(x)≥0,∴函数f(x)在x∈[1,2]上单调递增,因此x=2时,函数f(x)取得最大值,f(2)=2﹣ln2.

时,f′(x)= ,可得f′(x)≥0,∴函数f(x)在x∈[1,2]上单调递增,因此x=2时,函数f(x)取得最大值,f(2)=2﹣ln2.

时,2> >1.可得x=﹣ 时,函数f(x)取得最大值,f(﹣ )=1﹣ +ln(﹣2a).

时,f′(x)= ≤0,∴函数f(x)在x∈[1,2]上单调递减,因此x=1时,函数f(x)取得最大值,

f(1)=1﹣a.

a 时,0< <1,可得f′(x)≤0,∴函数f(x)在x∈[1,2]上单调递减,因此x=1时,函数f(x)取得最大值,f(1)=1﹣a.

综上可得: 时,函数f(x)取得最大值为f(2)=2﹣ln2.

时,函数f(x)取得最大值f(﹣ )=1﹣ +ln(﹣2a).

a 时,函数f(x)取得最大值,f(1)=1﹣a.


(2)解:f′(x)=2ax+1﹣2a﹣ ,f′(x0)=a(x1+x2)+1﹣2a﹣

y1﹣y2= +(1﹣2a)x1﹣lnx1﹣[a +(1﹣2a)x2﹣lnx2]=a(x1+x2)(x1﹣x2)+(1﹣2a)(x1﹣x2)+ln

=a(x1+x2)+(1﹣2a)+

∴f′(x0)﹣ =﹣ =

不妨设0<x1<x2,令

= =lnt﹣ =g(t),t>1.

则g′(t)= = >0,

∴函数g(t)在(1,+∞)上单调递增.

∴g(t)>g(1)=0.

>0,

>0.

∴f′(x0)>


【解析】(1)f′(x)=2ax+1﹣2a﹣ = .(x∈[1,2]).对a分类讨论,利用导数研究函数的单调性极值与最值,即可得出.(2)f′(x)=2ax+1﹣2a﹣ ,f′(x0)=a(x1+x2)+1﹣2a﹣ .而 =a(x1+x2)+(1﹣2a)+ .作差可得f′(x0)﹣ =﹣ = .不妨设0<x1<x2 , 令 .由 = =lnt﹣ =g(t),t>1.利用导数研究其单调性极值与最值即可得出.
【考点精析】解答此题的关键在于理解函数的极值与导数的相关知识,掌握求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值,以及对函数的最大(小)值与导数的理解,了解求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点H(﹣1,0),点P在y轴上,动点M满足PH⊥PM,且直线PM与x轴交于点Q,Q是线段PM的中点.
(1)求动点M的轨迹E的方程;
(2)若点F是曲线E的焦点,过F的两条直线l1 , l2关于x轴对称,且l1交曲线E于A、C两点,l2交曲线E于B、D两点,A、D在第一象限,若四边形ABCD的面积等于 ,求直线l1 , l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四面体ABCD中,E、F分别是棱BC和AD的中点,则直线AE和CF所成的角的余弦值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如下表所示),规定80分及以上者晋级成功,否则晋级失败.

晋级成功

晋级失败

合计

16

50

合计

(Ⅰ)求图中a的值;
(Ⅱ)根据已知条件完成下面2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?
(Ⅲ)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为X,求X的分布列与数学期望E(X).
(参考公式: ,其中n=a+b+c+d)

P(K2≥k0

0.40

0.25

0.15

0.10

0.05

0.025

k0

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】赌博有陷阱.某种赌博游戏每局的规则是:参与者现在从标有5、6、7、8、9的相同小球中随机摸取一个,将小球上的数字作为其赌金(单位:元);随后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其资金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与资金,则Eξ﹣Eη=(元).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|< )的最小正周期为π,且f(﹣x)=f(x),则(
A.f(x)在(0, )单调递增
B.f(x)在( )单调递减
C.f(x)在( )单调递增
D.f(x)在( ,π)单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足acosB=bcosA.
(1)判断△ABC的形状;
(2)求sin(2A+ )﹣2cos2B的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程为ρ=2,在以极点为直角坐标原点O,极轴为x轴的正半轴建立的平面直角坐标系xOy中,直线l的参数方程为 (t为参数).
(1)写出直线l的普通方程与曲线C的直角坐标方程;
(2)在平面直角坐标系中,设曲线C经过伸缩变换φ: 得到曲线C′,若M(x,y)为曲线C′上任意一点,求点M到直线l的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,三棱柱ABC﹣A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°.
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)E是棱CC1所在直线上的一点,若二面角A﹣B1E﹣B的正弦值为 ,求CE的长.

查看答案和解析>>

同步练习册答案