分析 (1)利用两角和的正弦函数公式化简函数解析式可得f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,由2k$π-\frac{π}{2}$≤2x+$\frac{π}{4}$≤2k$π+\frac{π}{2}$,k∈Z,可解得f(x)的单调递增区间.
(2)由f(x)≥2得sin(2x+$\frac{π}{4}$)$≥\frac{\sqrt{2}}{2}$,从而解得2kπ+$\frac{π}{4}$≤2x+$\frac{π}{4}$≤2kπ$+\frac{3π}{4}$,即可解得x的取值集合.
解答 (本小题满分12分)
解:(1)f(x)=2cosx(sinx+cosx)
=2sinxcosx+2cos2x
=sin2x+1+cos2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,…(3分)
由2k$π-\frac{π}{2}$≤2x+$\frac{π}{4}$≤2k$π+\frac{π}{2}$,k∈Z,可解得f(x)的单调递增区间为:[kπ$-\frac{3π}{8}$,k$π+\frac{π}{8}$],k∈Z.…(6分)
(2)∵由f(x)≥2得sin(2x+$\frac{π}{4}$)$≥\frac{\sqrt{2}}{2}$,…(9分)
∴2kπ+$\frac{π}{4}$≤2x+$\frac{π}{4}$≤2kπ$+\frac{3π}{4}$,可得kπ≤x≤k$π+\frac{π}{4}$,…(11分)
∴x的取值集合为:[kπ,k$π+\frac{π}{4}$],k∈Z.…(12分)
点评 本题主要考查了两角和的正弦函数公式,正弦函数的图象和性质的应用,考查了计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2 | B. | 2 | C. | ±2 | D. | ±4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com