精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=2cosx(sinx+cosx)
(1)求f(x)的单调递增区间;
(2)求使f(x)≥2成立的x的取值集合.

分析 (1)利用两角和的正弦函数公式化简函数解析式可得f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,由2k$π-\frac{π}{2}$≤2x+$\frac{π}{4}$≤2k$π+\frac{π}{2}$,k∈Z,可解得f(x)的单调递增区间.
(2)由f(x)≥2得sin(2x+$\frac{π}{4}$)$≥\frac{\sqrt{2}}{2}$,从而解得2kπ+$\frac{π}{4}$≤2x+$\frac{π}{4}$≤2kπ$+\frac{3π}{4}$,即可解得x的取值集合.

解答 (本小题满分12分)
解:(1)f(x)=2cosx(sinx+cosx)
=2sinxcosx+2cos2x
=sin2x+1+cos2x
=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1,…(3分)
由2k$π-\frac{π}{2}$≤2x+$\frac{π}{4}$≤2k$π+\frac{π}{2}$,k∈Z,可解得f(x)的单调递增区间为:[kπ$-\frac{3π}{8}$,k$π+\frac{π}{8}$],k∈Z.…(6分)
(2)∵由f(x)≥2得sin(2x+$\frac{π}{4}$)$≥\frac{\sqrt{2}}{2}$,…(9分)
∴2kπ+$\frac{π}{4}$≤2x+$\frac{π}{4}$≤2kπ$+\frac{3π}{4}$,可得kπ≤x≤k$π+\frac{π}{4}$,…(11分)
∴x的取值集合为:[kπ,k$π+\frac{π}{4}$],k∈Z.…(12分)

点评 本题主要考查了两角和的正弦函数公式,正弦函数的图象和性质的应用,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知sin(α+$\frac{π}{3}$)=-$\frac{\sqrt{2}}{2}$,若α∈(-$\frac{4π}{3}$,-$\frac{5π}{6}$),则α=$-\frac{5π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.定义:对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”.
(1)已知二次函数f(x)=ax2+2x-4a(a∈R),试判断f(x)是否为定义域R上的“局部奇函数”?若是,求出满足f(-x)=-f(x)的x的值;若不是,请说明理由;
(2)若f(x)=2x+m是定义在区间[-1,1]上的“局部奇函数”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等比数列{an},满足a1+a2+a3+a4+a5=2,$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+\frac{1}{{a}_{3}}+\frac{1}{{a}_{4}}+\frac{1}{{a}_{5}}$=$\frac{1}{2}$,则a3=(  )
A.-2B.2C.±2D.±4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知在△BCE中,D是边BC上一点,满足CD=2BD=2CE=4,P是边BE上一点.满足∠BPD=∠DCE=60°.
(1)求证:P,D,C,E四点共圆,并求其外接圆的面积;
(2)求BP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线y=$\sqrt{3}$x+2的倾斜角是(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{5π}{6}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.a=tan(cos(-1))与b=cos(tan(-1))的大小关系为(  )
A.a>bB.a<bC.a=bD.均不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知椭圆C:$\frac{{x}^{2}}{4}$+y2=1,Q为椭圆C的左顶点,斜率为k(k≠0)的直线l与椭圆C交于A、B两点,当∠AQB=$\frac{π}{2}$时,直线1过x轴上的定点N,则点N的坐标为N(-$\frac{2}{5}$,0)或($-\frac{6}{5},0$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知数列{an}中,a1=5,a2=2,且2(an+an+2)=5an+1,则数列{an}的前n项之和为11-$\frac{1}{3}$(25-n+2n).

查看答案和解析>>

同步练习册答案