10£®ÒÑÖªÇúÏßC1£º¦Ñ=1£¬ÇúÏßC2£º$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t-\sqrt{2}}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©
£¨1£©ÇóC1ÓëC2½»µãµÄ×ø±ê£»
£¨2£©Èô°ÑC1£¬C2Éϸ÷µãµÄ×Ý×ø±ê¶¼Ñ¹ËõΪԭÀ´µÄÒ»°ë£¬·Ö±ðµÃµ½ÇúÏßC1¡äÓëC2¡ä£¬Ð´³öC1¡äÓëC2¡äµÄ²ÎÊý·½³Ì£¬C1ÓëC2¹«¹²µãµÄ¸öÊýºÍC1¡äÓëC2¡ä¹«¹²µãµÄ¸öÊýÊÇ·ñÏàͬ£¬ËµÃ÷ÄãµÄÀíÓÉ£®

·ÖÎö £¨1£©·Ö±ðÇó³öC1µÄÖ±½Ç×ø±ê·½³ÌºÍC2µÄÆÕͨ·½³Ì£¬ÁªÁ¢·½³Ì×éÄÜÇó³öC1ÓëC2½»µãµÄ×ø±ê£®
£¨2£©Ñ¹ËõºóµÄ²ÎÊý·½³Ì·Ö±ðΪ${{C}_{1}}^{'}$£º$\left\{\begin{array}{l}{x=cos¦È}\\{y=\frac{1}{2}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©${{C}_{2}}^{'}$£º$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t-\sqrt{2}}\\{y=\frac{\sqrt{2}}{4}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬»¯ÎªÆÕͨ·½³Ì£¬ÁªÁ¢ÏûÔª£¬ÓÉÆäÅбðʽµÃµ½Ñ¹ËõºóµÄÖ±Ïß${{C}_{2}}^{'}$ÓëÍÖÔ²${{C}_{1}}^{'}$ÈÔȻֻÓÐÒ»¸ö¹«¹²µã£¬ºÍC1ÓëC2¹«¹²µã¸öÊýÏàͬ£®

½â´ð ½â£º£¨1£©¡ßÇúÏßC1£º¦Ñ=1£¬¡àC1µÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=1£¬
¡àC1ÊÇÒÔÔ­µãΪԲÐÄ£¬ÒÔ1Ϊ°ë¾¶µÄÔ²£¬
¡ßÇúÏßC2£º$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t-\sqrt{2}}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬¡àC2µÄÆÕͨ·½³ÌΪx-y+$\sqrt{2}$=0£¬ÊÇÖ±Ïߣ¬
ÁªÁ¢$\left\{\begin{array}{l}{x-y+\sqrt{2}=0}\\{{x}^{2}+{y}^{2}=1}\end{array}\right.$£¬½âµÃx=-$\frac{\sqrt{2}}{2}$£¬y=$\frac{\sqrt{2}}{2}$£®
¡àC2ÓëC1Ö»ÓÐÒ»¸ö¹«¹²µã£º£¨-$\frac{\sqrt{2}}{2}$£¬$\frac{\sqrt{2}}{2}$£©£®
£¨2£©Ñ¹ËõºóµÄ²ÎÊý·½³Ì·Ö±ðΪ
${{C}_{1}}^{'}$£º$\left\{\begin{array}{l}{x=cos¦È}\\{y=\frac{1}{2}sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©${{C}_{2}}^{'}$£º$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t-\sqrt{2}}\\{y=\frac{\sqrt{2}}{4}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
»¯ÎªÆÕͨ·½³ÌΪ£º${{C}_{1}}^{'}$£ºx2+4y2=1£¬${{C}_{2}}^{'}$£ºy=$\frac{1}{2}x+\frac{\sqrt{2}}{2}$£¬
ÁªÁ¢ÏûÔªµÃ$2{x}^{2}+2\sqrt{2}x+1=0$£¬
ÆäÅбðʽ$¡÷=£¨2\sqrt{2}£©^{2}-4¡Á2¡Á1=0$£¬
¡àѹËõºóµÄÖ±Ïß${{C}_{2}}^{'}$ÓëÍÖÔ²${{C}_{1}}^{'}$ÈÔȻֻÓÐÒ»¸ö¹«¹²µã£¬ºÍC1ÓëC2¹«¹²µã¸öÊýÏàͬ£®

µãÆÀ ±¾Ì⿼²éÁ½ÇúÏߵĽ»µã×ø±êµÄÇ󷨣¬¿¼²éѹËõºóµÄÖ±ÏßÓëÍÖÔ²µÄ¹«¹²µã¸öÊýµÄÅжϣ¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÒ»Ôª¶þ´Î·½³ÌµÄ¸ùµÄÅбðʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÉèPÊDz»µÈʽ×é$\left\{\begin{array}{l}{x¡Ý0}\\{y¡Ý0}\\{x+3y¡Ü1}\end{array}\right.$±íʾµÄƽÃæÇøÓòÄÚµÄÈÎÒâÒ»µã£¬ÏòÁ¿$\overrightarrow{m}$=£¨-1£¬1£©£¬$\overrightarrow{n}$=£¨2£¬-1£©£¬Èô$\overrightarrow{OP}=¦Ë\overrightarrow m+¦Ì\overrightarrow n$£¬Ôò$\frac{¦Ì}{¦Ë+1}$µÄÈ¡Öµ·¶Î§£¨¡¡¡¡£©
A£®[-$\frac{1}{2}$£¬2]B£®[0£¬1]C£®[$\frac{1}{2}$£¬1]D£®[0£¬$\frac{1}{2}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¶¨ÒåÒƶ¯ÔËËã¡°¨’¡±£¬¶ÔÓÚÈÎÒâÕýÕûÊýnÂú×ãÒÔÏÂÔËË㣺£¨1£©1¨’1=1£»£¨2£©£¨n+1£©¨’1=2+n¨’1£¬Ôòn¨’1Óú¬nµÄ´úÊýʽ¿É±íʾΪ£¨¡¡¡¡£©
A£®2n-1B£®nC£®2n-1D£®2n-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ËÄÀâ׶P-ABCDÖУ¬µ×ÃæABCDΪƽÐÐËıßÐΣ¬PD¡Íµ×ÃæABCD£¬AB=2AD£¬¡ÏADB=90¡ã£¬
£¨1£©Ö¤Ã÷PA¡ÍBD£»
£¨2£©ÉèPD=AD=1£¬ÇóÈýÀâ׶D-PBCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÈçͼËùʾ£¬ÒÑÖªABCDΪÌÝÐΣ¬AB¡ÎCD£¬CD=2AB£¬ÇÒPD¡ÍƽÃæABCD£¬MΪÏ߶ÎPCÉÏÒ»µã£®
£¨1£©µ±¡ÏCBD=90¡ãʱ£¬Ö¤Ã÷£ºÆ½ÃæPBC¡ÍƽÃæPDB£»
£¨2£©ÉèƽÃæPAB¡ÉƽÃæPDC=l£¬Ö¤Ã÷£ºAB¡Îl
£¨3£©µ±Æ½ÃæMBD½«ËÄÀâ׶P-ABCDÇ¡ºÃ·Ö³ÉÁ½¸öÌå»ýÌå»ýÏàµÈµÄ¼¸ºÎÌåʱ£¬ÊÔÇó$\frac{PM}{MC}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÉèƽÃæÖ±½Ç×ø±êϵԭµãÓ뼫×ø±ê¼«µãÖغϣ¬xÖáÕý°ëÖáÓ뼫ÖáÖغϣ¬ÈôÒÑÖªÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2=$\frac{12}{3co{s}^{2}¦È+4si{n}^{2}¦È}$£¬µãF1¡¢F2ΪÆä×ó¡¢ÓÒ½¹µã£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£¬t¡ÊR£©£®
£¨¢ñ£©ÇóÇúÏßCµÄ±ê×¼·½³ÌºÍÖ±ÏßlµÄÆÕͨ·½³Ì£»
£¨¢ò£©ÈôµãPΪÇúÏßCÉϵĶ¯µã£¬ÇóµãPµ½Ö±ÏßlµÄ×î´ó¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÇúÏßC1£º¦Ñ=4cos¦È£®
£¨1£©ÔÚ¼«×ø±êϵÖУ¬ÓëÇúÏßC1ÏàÇеÄÒ»ÌõÖ±Ïß·½³ÌΪB
A£®¦Ñcos¦È=2   B£®¦Ñsin¦È=2   C£®¦Ñ=4sin£¨¦È+$\frac{¦Ð}{3}$£©   D£®¦Ñ=4sin£¨¦È-$\frac{¦Ð}{3}$£©
£¨2£©ÒÑÖªÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ£º¦Ñcos¦È=3£¬ÔòÇúÏßC1ÓëC2½»µãµÄ¼«×ø±êΪ£¨2$\sqrt{3}$£¬$\frac{¦Ð}{6}$£©»ò£¨2$\sqrt{3}$£¬-$\frac{¦Ð}{6}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑ֪˫ÇúÏß$\frac{x^2}{4}-{y^2}=1$£¬¹ýµãO£¨0£¬0£©×÷Ö±ÏßlÓëË«ÇúÏß½öÓÐÒ»¸ö¹«¹²µã£¬ÕâÑùµÄÖ±Ïßl¹²ÓУ¨¡¡¡¡£©
A£®0ÌõB£®2ÌõC£®4ÌõD£®ÎÞÊýÌõ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖª¼¯ºÏA={-1£¬0£¬1}£¬¼¯ºÏBÂú×ãA¡ÈB={-1£¬0£¬1}£¬Ôò¼¯ºÏBÓÐ8¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸