精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,为等边三角形,

(1)若点分别是线段的中点,求证:平面平面

(2)若二面角为直二面角,求直线与平面所成角的正弦值.

【答案】(1)见解析;(2)

【解析】

1)根据等腰三角形三线合一和已知的角度和边长关系可证得,从而可知;在利用三角形中位线可证得;根据线面平行判定定理和面面平行判定定理可证得结论;(2)设于点,利用面面垂直的性质定理可证得平面,从而可建立起空间直角坐标系;利用线面角的向量求法可求得结果.

(1)为等边三角形,且是线段的中点

平面平面 平面

分别是线段的中点

平面平面 平面

平面平面

(2)设于点,连接

由对称性知,的中点,且

二面角为直二面角 平面

不妨设,则/p>

为坐标原点,所在直线分别为轴,建立如图所示空间直角坐标系

设平面的法向量为

,即:

,得

直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面

(1)求证:平面

(2)在棱上是否存在点,使得平面?若存在,确定点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为的面积为.

1)求椭圆的方程;

2)设是椭圆上的一点,直线轴交于点,直线轴交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是函数的导函数,且,则下列说法正确的是___________.

②曲线处的切线斜率最小;

③函数存在极大值和极小值;

在区间上至少有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某手机厂商在销售200万台某型号手机时开展“手机碎屏险”活动、活动规则如下:用户购买该型号手机时可选购“手机碎屏险”,保费为元,若在购机后一年内发生碎屏可免费更换一次屏幕.该手机厂商将在这万台该型号手机全部销售完毕一年后,在购买碎屏险且购机后一年内未发生碎屏的用户中随机抽取名,每名用户赠送元的红包,为了合理确定保费的值,该手机厂商进行了问卷调查,统计后得到下表(其中表示保费为元时愿意购买该“手机碎屏险”的用户比例);

1)根据上面的数据求出关于的回归直线方程;

2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为.已知更换一次该型号手机屏幕的费用为元,若该手机厂商要求在这次活动中因销售该“手机碎屏险”产生的利润不少于万元,能否把保费定为5元?

x

10

20

30

40

50

y

0.79

0.59

0.38

0.23

0.01

参考公式:回归方程中斜率和截距的最小二乘估计分别为

参考数据:表中5个值从左到右分别记为,相应的值分别记为,经计算有,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家拟在2020年举行促销活动,经调查测算,某产品的年销售量(即该厂的年产量)万件与年促销费用万元,满足为常数),如果不搞促销活动,则该产品的年销售量只能是1万件,已知2020年生产该产品的固定投入为8万元,每生产1万件,该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

1)将2020年该产品的利润(万元)表示为年促销费用(万元)的函数;

2)该厂家2020年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,设直线轴的交点为,过点且斜率为的直线与椭圆交于两点,为线段的中点.

(1)若直线的倾斜角为,求的值;

(2)设直线交直线于点,证明:直线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数在点处的切线方程;

2)求函数上的值域;

3)若存在,使得成立,求的最大值.(其中自然常数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个暗箱中有形状和大小完全相同的3只白球与2只黑球,每次从中取出一只球,取到白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3只球.

1)求甲三次都取得白球的概率;

2)求甲总得分ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案