精英家教网 > 高中数学 > 题目详情

如图,在三棱锥中,点分别是棱的中点.

(1)求证://平面
(2)若平面平面,求证:

(1)详见解析;(2)详见解析.

解析试题分析:(1)这是一个证明直线和平面平行的问题,考虑直线与平面平行的判定定理,可找面外线平行于面内线,本题容易找到,结论自然得证;(2)因为条件中有平面与平面垂直,故可考虑平面与平面垂直的判定定理,在一平面内作垂直于交线的直线平行于另一平面,再得到线线垂直,再证线面垂直,再得线线垂直,问题不难解决.
试题解析:(1)在中,分别是的中点,所以
平面平面,所以平面.      6分
(2)在平面内过点,垂足为.因为平面平面,平面平面平面,所以平面,      8分
平面,所以,                  10分
平面平面
所以平面,                         12分
平面,所以.                  14分

考点:直线与平面平行的判定、直线与平面垂直的判定,平面与平面垂直的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,平面平面是等腰直角三角形,,四边形是直角梯形,∥AE,,分别为的中点.

(1)求异面直线所成角的大小;
(2)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,已知的直径,点上两点,且为弧的中点.将沿直径折起,使两个半圆所在平面互相垂直(如图2).

(Ⅰ)求证:
(Ⅱ)在弧上是否存在点,使得平面?若存在,试指出点的位置;若不存在,请说明理由;
(Ⅲ)求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图1,矩形中,,,分别为边上的点,且,,将沿折起至位置(如图2所示),连结,其中.

(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,四条侧棱长均相等且于点.

(Ⅰ)求证:;
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为4的正方形ABCD与矩形ABEF所在平面互相垂直,M,N分别为AE,BC的中点,AF=3.

(I)求证:DA⊥平面ABEF;
(Ⅱ)求证:MN∥平面CDFE;
(Ⅲ)在线段FE上是否存在一点P,使得AP⊥MN? 若存在,求出FP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱柱的侧棱长和底面边长均为2,在底面ABC内的射影O为底面△ABC的中心,如图所示:

(1)联结,求异面直线所成角的大小;
(2)联结,求三棱锥C1-BCA1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1、AA1的中点,点F在棱AB上,且

(Ⅰ)求证:EF∥平面BDC1
(Ⅱ)求二面角E-BC1-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥S-ABCD中,底面ABCD是矩形,SA底面ABCD,SA=AD,点M是SD的中点,ANSC且交SC于点N.

(Ⅰ)求证:SB∥平面ACM;
(Ⅱ)求证:平面SAC平面AMN.

查看答案和解析>>

同步练习册答案