精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为边长为2的菱形,∠DAB=60°,∠ADP=90°,面ADP⊥面ABCD,点F为棱PD的中点.

(1)在棱AB上是否存在一点E,使得AF∥面PCE,并说明理由;

(2)当二面角D﹣FC﹣B的余弦值为时,求直线PB与平面ABCD所成的角.

【答案】(1)见解析;(2)45°

【解析】

(1)点E为棱AB的中点取PC的中点Q,连结EQ、FQ,推导出四边形AEQF为平行四边形,从而AF∥EQ,由此能证明AF∥平面PEC.(2)推导出ED⊥CD,PD⊥AD,且从而PD⊥面ABCD,故以D为坐标原点建立空间坐标系,利用向量法能求出直线PB与平面ABCD所成的角.

(1)在棱AB上存在点E,使得AF∥面PCE,点E为棱AB的中点.

理由如下:取PC的中点Q,连结EQ、FQ,由题意,FQ∥DC且,AE∥CD且

故AE∥FQ且AE=FQ.所以,四边形AEQF为平行四边形.所以,AF∥EQ,又EQ平面PEC,AF平面PEC,

所以,AF∥平面PEC.

(2)由题意知△ABD为正三角形,所以ED⊥AB,亦即ED⊥CD,又∠ADP=90°,

所以PD⊥AD,且面ADP⊥面ABCD,面ADP∩面ABCD=AD,

所以PD⊥面ABCD,故以D为坐标原点建立如图空间坐标系,

设FD=a,则由题意知D(0,0,0),F(0,0,a),C(0,2,0),

,设平面FBC的法向量为

则由,令x=1,则

所以取,显然可取平面DFC的法向量

由题意:,所以a=1.

由于PD⊥面ABCD,所以PB在平面ABCD内的射影为BD,

所以∠PBD为直线PB与平面ABCD所成的角,

易知在Rt△PBD中,从而∠PBD=45°,

所以直线PB与平面ABCD所成的角为45°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】超级病菌是一种耐药性细菌,产生超级细菌的主要原因是用于抵抗细菌侵蚀的药物越来越多,但是由于滥用抗生素的现象不断的发生,很多致病菌也对相应的抗生素产生了耐药性,更可怕的是,抗生素药物对它起不到什么作用,病人会因为感染而引起可怕的炎症,高烧、痉挛、昏迷直到最后死亡.某药物研究所为筛查某种超级细菌,需要检验血液是否为阳性,现有n)份血液样本,每个样本取到的可能性均等,有以下两种检验方式:

1)逐份检验,则需要检验n次;

2)混合检验,将其中k)份血液样本分别取样混合在一起检验,若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为次,假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p.

1)假设有5份血液样本,其中只有2份样本为阳性,若采用逐份检验方式,求恰好经过2次检验就能把阳性样本全部检验出来的概率;

2)现取其中k)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.

i)试运用概率统计的知识,若,试求p关于k的函数关系式

ii)若,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数期望值更少,求k的最大值.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了了解篮球运动是否与性别相关,在高一新生中随机调查了40名男生和40名女生,调查的结果如下表:

喜欢

不喜欢

总计

女生

8

男生

20

总计

1)根据题意完成上面的列联表,并用独立性检验的方法分析,能否在犯错的概率不超过0.01的前提下认为喜欢篮球运动与性别有关?

2)从女生中按喜欢篮球运动与否,用分层抽样的方法抽取5人做进一步调查,从这5人中任选2人,求2人都喜欢篮球运动的概率.

附:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,讨论函数的单调性;

(2)若函数有两个极值点,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 )的焦点是椭圆 )的右焦点,且两曲线有公共点

1)求椭圆的方程;

2)椭圆的左、右顶点分别为 ,若过点且斜率不为零的直线与椭圆交于两点,已知直线相较于点,试判断点是否在一定直线上?若在,请求出定直线的方程;若不在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了拓展城市的旅游业,实现不同市区间的物资交流,政府决定在市与市之间建一条直达公路,中间设有至少8个的偶数个十字路口,记为,现规划在每个路口处种植一颗杨树或者木棉树,且种植每种树木的概率均为.

1)现征求两市居民的种植意见,看看哪一种植物更受欢迎,得到的数据如下所示:

A市居民

B市居民

喜欢杨树

300

200

喜欢木棉树

250

250

是否有的把握认为喜欢树木的种类与居民所在的城市具有相关性;

2)若从所有的路口中随机抽取4个路口,恰有个路口种植杨树,求的分布列以及数学期望;

3)在所有的路口种植完成后,选取3个种植同一种树的路口,记总的选取方法数为,求证:.

附:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的极值;

2)若,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中:①若“”是“”的充要条件;

②若“”,则实数的取值范围是

③已知平面,直线,若,则

④函数的所有零点存在区间是.

其中正确的个数是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

的单调区间和极值;

时,若,且,证明:

查看答案和解析>>

同步练习册答案