精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线y2=2px(p>0)上点M(3,m)到焦点F的距离为4.

(Ⅰ)求抛物线方程;

(Ⅱ)点P为准线上任意一点,AB为抛物线上过焦点的任意一条弦,设直线PA,PB,PF的斜率为k1,k2,k3,问是否存在实数λ,使得k1+k2=λk3恒成立.若存在,请求出λ的值;若不存在,请说明理由.

【答案】(1)抛物线方程为y2=4x;(2)见解析.

【解析】

由抛物线的定义,到焦点的距离等于到准线的距离即可求出,即可得到方程

求出焦点和准线,设出直线,联立方程,消去得到的方程,运用韦达定理,设,运用斜率公式,化简整理,注意点在抛物线上,且全部转化为的式子,即可判断

(I)抛物线y2=2px(p>0)的焦点为(,0),准线为x=

由抛物线的定义可知:4=3,p=2

∴抛物线方程为y2=4x;

(II)由于抛物线y2=4x的焦点F为(1,0),准线为x=﹣1,

设直线AB:x=my+1,与y2=4x联立,消去x,整理得:

y2﹣4my﹣4=0,

设A(x1,y1),B(x2,y2),P(﹣1,t),有

易知,而

==

==2k3

∴存在实数λ=2,使得k1+k2=λk3恒成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知奇函数fx)=a-aRe为自然对数的底数).

(1)判定并证明fx)的单调性;

(2)若对任意实数xfx)>m2-4m+2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人——宰相宰相西萨班达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!”国王觉得这要求太容易满足了,就命令给他这些麦粒.当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求.那么,宰相要求得到的麦粒到底有多少粒?下面是四位同学为了计算上面这个问题而设计的程序框图,其中正确的是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,,且底面中点,点上一点.

1)求证: 平面

2)求二面角 的余弦值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具厂生产一种办公桌,每张办公桌的成本为100元,出厂单价为160元,该厂为鼓励销售商多订购,决定一次订购量超过100张时,每超过一张,这批订购的全部办公桌出厂单价降低1元.根据市场调查,销售商一次订购量不会超过160张.

(1)设一次订购量为张,办公桌的实际出厂单价为元,求关于的函数关系式

(2)当一次性订购量为多少时,该家具厂这次销售办公桌所获得的利润最大?其最大利润是多少元?(该家具厂出售一张办公桌的利润=实际出厂单价-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图CD是以AB为直径的圆上的两点,FAB上的一点,且ABD

1)求证:平面

2)求证:平面

3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等边三角形的中线与中位线相交于,已知旋转过程中的一个图形,下列命题中,错误的是

A. 恒有

B. 异面直线不可能垂直

C. 恒有平面⊥平面

D. 动点在平面上的射影在线段

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为偶函数,且当时,..给出下列关于函数的说法:①当时,;②函数为奇函数;③函数上为增函数;④函数的最小值为,无最大值.其中正确的是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列函数的解析式:

(1)已知f(x)是二次函数,且f(0)=2,f(x+1)-f(x)=x-1,求f(x);

(2)已知3f(x)+2f(-x)=x+3,求f(x).

查看答案和解析>>

同步练习册答案