精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象在点处的切线方程为

(Ⅰ)求实数的值;

(Ⅱ)求函数在区间上的最大值;

(Ⅲ)曲线上存在两点,使得是以坐标原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围.

【答案】(;()当[-12]上的最大值为2

[-12]上的最大值为;(.

【解析】试题分析:(1)利用导数几何意义: 可列等量关系.时, 所以,又所以因此 2)求分段函数最值,先分别讨论各区间函数最值,再比较大小,确定最值.当时,由,列表分析得的最大值为,时, ,需根据c的值确定函数最值,当时, 恒成立, ,当时, 的最大值为,比较2的大小得:当时, 上的最大值为,当时, 上的最大值为3)利用坐标探求等量关系,确定坐标所在位置是解题关键.根据条件的横坐标互为相反数,不妨设.,则,有

,无解,若,则.取值范围是

1)当时,

所以,又

所以因此

2)当时,由,列表得:

x

-1

(-1,0)

0




1



-

0

+

0

-



2






0

所以当时, 的最大值为

时,

时, 恒成立,

此时上的最大值为

时, 上单调递增,且.

,则,所以当时,

上的最大值为

时, 上的最大值为.

综上可知,当时, 上的最大值为

时, 上的最大值为.

,根据条件的横坐标互为相反数,不妨设.

,则

是直角得, ,即

.此时无解;

,则.由于的中点在轴上,且,所以点不可能在轴上,即.同理有,即.由于函数的值域是,实数的取值范围是即为所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.

(1)求圆的直角坐标方程;

(2)设圆与直线交于点,若点的坐标为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD及其三视图如下图所示,E是侧棱PC上的动点.
(Ⅰ)求四棱锥P﹣ABCD的体积;
(Ⅱ)不论点E在何位置,是否都有BD⊥AE?试证明你的结论;
(Ⅲ)若点E为PC的中点,求二面角D﹣AE﹣B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆F1:(x+1)2+y2=16,定点F2(1,0),A是圆F1上的一动点,线段F2A的垂直平分线交半径F1AP点.

(1)求P点的轨迹C的方程;

(2)四边形EFGH的四个顶点都在曲线C上,且对角线EG,FH过原点O,

kEGkFH=-,求证:四边形EFGH的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线 与椭圆有且只有一个公共点.

(Ⅰ)求椭圆的方程及点的坐标;

(Ⅱ)设是坐标原点,直线平行于,与椭圆交于不同的两点,且与直线交于点,证明:存在常数,使得,并求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数 的定义域是(
A..
B..
C..
D..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家“十三五”计划,提出创新兴国,实现中国创新,某市教育局为了提高学生的创新能力,把行动落到实处,举办一次物理、化学综合创新技能大赛,某校对其甲、乙、丙、丁四位学生的物理成绩(x)和化学成绩(y)进行回归分析,求得回归直线方程为y=1.5x﹣35.由于某种原因,成绩表(如表所示)中缺失了乙的物理和化学成绩.

物理成绩(x)

75

m

80

85

化学成绩(y)

80

n

85

95

综合素质
(x+y)

155

160

165

180


(1)请设法还原乙的物理成绩m和化学成绩n;
(2)在全市物理化学科技创新比赛中,由甲、乙、丙、丁四位学生组成学校代表队参赛.共举行3场比赛,每场比赛均由赛事主办方从学校代表中随机抽两人参赛,每场比赛所抽的选手中,只要有一名选手的综合素质分高于160分,就能为所在学校赢得一枚荣誉奖章.若记比赛中赢得荣誉奖章的枚数为ξ,试根据上表所提供数据,预测该校所获奖章数ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校课改实行选修走班制,现有甲,乙,丙,丁四位学生准备选修物理,化学,生物三个科目.每位学生只选修一个科目,且选修其中任何一个科目是等可能的.
(1)恰有2人选修物理的概率;
(2)选修科目个数ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(log2x﹣2)(log4x﹣
(1)当x∈[2,4]时,求该函数的值域;
(2)若f(x)>mlog2x对于x∈[4,16]恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案