£¨2006•³¯ÑôÇøÈýÄ££©ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÏòÁ¿
OF
=£¨c£¬0£©£¨cΪ³£Êý£¬ÇÒc£¾0£©£¬
OG
=£¨x£¬x£©£¨x¡ÊR£©£¬
|
FG
|µÄ×îСֵΪ  1 £¬  
OE
=(
a2
c
£¬  t)
£¨aΪ³£Êý£¬ÇÒa£¾c£¬t¡ÊR£©£®¶¯µãPͬʱÂú×ãÏÂÁÐÈý¸öÌõ¼þ£º£¨1£©|
PF
|=
c
a
|
PE
|£»£¨2£©
PE
=¦Ë
OF
£¨¦Ë¡ÊR£¬ÇҦˡÙ0£©£»£¨3£©¶¯µãPµÄ¹ì¼£C¾­¹ýµãB£¨0£¬-1£©£®
£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚ·½ÏòÏòÁ¿Îª
m
=£¨1£¬k£©£¨k¡Ù0£©µÄÖ±Ïßl£¬lÓëÇúÏßCÏཻÓÚM¡¢NÁ½µã£¬Ê¹|
BM
|=|
BN
|£¬ÇÒ
BM
Óë
BN
µÄ¼Ð½ÇΪ60¡ã£¿Èô´æÔÚ£¬Çó³ökÖµ£¬²¢Ð´³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨I£©ÀûÓÃÏòÁ¿µÄÄ£µÄ¼ÆË㹫ʽºÍ¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³öc£¬ÓÉ
OE
=(
a2
c
£¬ t) (t¡ÊR)
£¬¿ÉÖªµãEÔÚÖ±Ïß x=
a2
c
ÉÏ
£®
ÓÉ£¨1£©¡¢£¨2£©ºÍÍÖÔ²µÄµÚ¶þ¶¨Òå¿ÉÖª£¬µãPµÄ¹ì¼£CÊÇÍÖÔ²£®µÃ³ö¼´¿É£®
£¨II£©¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄÖ±Ïßl£¬²¢ÉèlµÄ·½³ÌΪ£ºy=kx+m£¬M£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£¬°ÑÖ±ÏßlµÄ·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ¡÷£¾0¼°¸ùÓëϵÊýµÄ¹Øϵ£¬ÔÙÀûÓô¹Ö±Æ½·ÖÏßµÄÐÔÖʿɵÃÏ߶ÎMNµÄ´¹Ö±Æ½·ÖÏߵķ½³Ì£¬¸ù¾Ý¡÷BMNΪµÈ±ßÈý½ÇÐΣ®¿ÉµÃµãBµ½Ö±ÏßMNµÄ¾àÀëd=
3
2
|MN|
£®ÔÙÀûÓõ㵽ֱÏߵľàÀ빫ʽºÍÏÒ³¤¹«Ê½¼´¿ÉµÃ³ö£®
½â´ð£º½â£º£¨¢ñ£©¡ß|
FG
|=
(x-c)2+x2
=
2(x-
c
2
)
2
+
c2
2
¡Ý
2
2
c
£¬
¡à
2
2
c=1 £¬  ¼´c=
2
£®
ÓÉ
OE
=(
a2
c
£¬ t) (t¡ÊR)
£¬¿ÉÖªµãEÔÚÖ±Ïß x=
a2
c
ÉÏ
£®
ÓÉ£¨1£©¡¢£¨2£©¿ÉÖªµãPµ½Ö±Ïßx=
a2
c
¾àÀëÓëµ½µãFµÄ¾àÀëÖ®±ÈΪ
a
c
(a£¾c£¾0)
£¬
ÔÙÓÉÍÖÔ²µÄµÚ¶þ¶¨Òå¿ÉÖª£¬µãPµÄ¹ì¼£CÊÇÍÖÔ²£®
ÉèÍÖÔ²CµÄ·½³ÌΪ£º
x2
a2
+
y2
b2
=1
£¬ÆäÖÐb2=a2-c2£®
ÓÉ£¨3£©¿ÉÖªb=1£¬¡àa2=b2+c2=1+2=3£®¡àÍÖÔ²CµÄ·½³ÌΪ£º
x2
3
+y2=1
£®
£¨¢ò£©¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄÖ±Ïßl£¬²¢ÉèlµÄ·½³ÌΪ£ºy=kx+m£¬M£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£¬
y=kx+m
x2+3y2=3
£¬  ÏûÈ¥y£¬  µÃ(1+3k2)x2+6kmx+3m2-3=0
£®
Ôòx1+x2=-
6km
1+3k2
 £¬   x1x2=
3m2-3
1+3k2
£®
¡÷=36k2m2-12£¨m2-1£©£¨1+3k2£©=12[3k2-m2+1]£¾0     ¢Ù
ÉèÏ߶ÎMNµÄÖеãG£¨x0£¬y0£©£¬x0=
x1+x2
2
=-
3km
1+3k2
£¬   y0=kx0+m=-
3k2m
1+3k2
+m=
m
1+3k2
£¬
Ï߶ÎMNµÄ´¹Ö±Æ½·ÖÏߵķ½³ÌΪ£ºy-
m
1+3k2
=-
1
k
(x+
3km
1+3k2
)
£®
¡ß|
BM
|=|
BN
|
£¬¡àÏ߶ÎMNµÄ´¹Ö±Æ½·ÖÏß¹ýB£¨0£¬-1£©µã£®
¡à-1-
m
1+3k2
=-
1
k
3km
1+3k2
=-
3m
1+3k2
£®
¡àm=
1+3k2
2
£®¢Ú
¢Ú´úÈë¢Ù£¬µÃ3k2-£¨
1+3k2
2
)2+1£¾0 £¬  ½âµÃ-1£¼k£¼1 £¬ ÇÒk¡Ù0
£®¢Û
¡ß|
BM
|=|
BN
|£¬  ÇÒ
BM
Óë
BN
µÄ¼Ð½ÇΪ60¡ã£¬¡à¡÷BMNΪµÈ±ßÈý½ÇÐΣ®
¡àµãBµ½Ö±ÏßMNµÄ¾àÀëd=
3
2
|MN|
£®
¡ßd=
|1+m|
1+k2
=
|1+
1+3k2
2
|
1+k2
=
3
2
1+k2
£¬
ÓÖ¡ß|MN|=
1+k2
|x1-x2|=
1+k2
(x1+x2)2-4x1x2

=
1+k2
(-
6km
1+3k2
)
2
-4•
3m2-3
1+3k2
=
1+k2
1+3k2
12(3k2-m2+1)

¨T
1+k2
1+3k2
12[3k2-(
1+3k2
2
)2+1]
=3
1+k2
1+3k2
1-k2
£¬
¡à
3
2
1+k2
=
3
3
2
1+k2
1+3k2
1-k2
£®
½âµÃk2=
1
3
£¬¼´k=¡À
3
3
£¬Âú×ã¢Ûʽ£®´úÈë¢Ú£¬µÃm=
1+3k2
2
=
1+1
2
=1£®
Ö±ÏßlµÄ·½³ÌΪ£ºy=¡À
3
3
x+1
£®
µãÆÀ£ºÊìÁ·ÕÆÎÕÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏßÏཻÎÊÌâת»¯Îª°ÑÖ±Ïߵķ½³ÌÓëË«ÇúÏߵķ½³ÌÁªÁ¢¿ÉµÃ¸ùÓëϵÊýµÄ¹Øϵ¼°¡÷£¾0¡¢Öеã×ø±ê¹«Ê½¡¢·ÖÀàÌÖÂÛ˼Ïë·½·¨µÈÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2006•³¯ÑôÇøÈýÄ££©¼×¡¢ÒÒÁ½È˲μÓÒ»ÏîÖÇÁ¦²âÊÔ£®ÒÑÖªÔÚ±¸Ñ¡µÄ10µÀÌâÖУ¬¼×ÄÜ´ð¶ÔÆäÖеÄ6µÀÌ⣬ÒÒÄÜ´ð¶ÔÆäÖеÄ8µÀÌ⣮¹æ¶¨Ã¿Î»²ÎÈüÕ߶¼´Ó±¸Ñ¡ÌâÖÐËæ»ú³é³ö3µÀÌâ½øÐвâÊÔ£¬ÖÁÉÙ´ð¶Ô2µÀÌâ²ÅËãͨ¹ý£®
£¨¢ñ£©Çó¼×´ð¶ÔÊÔÌâÊý¦ÎµÄ¸ÅÂÊ·Ö²¼¼°ÊýѧÆÚÍû£»
£¨¢ò£©Çó¼×¡¢ÒÒÁ½ÈËÖÁÉÙÓÐÒ»ÈËͨ¹ý²âÊԵĸÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2006•³¯ÑôÇøÈýÄ££©º¯Êýy=f£¨x£©µÄͼÏóÈçͼËùʾ£¬Ôòy=f£¨x£©µÄµ¼º¯Êýy=f¡ä£¨x£©µÄͼÏó¿ÉÒÔÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2006•³¯ÑôÇøÈýÄ££©ÒÑÖªf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄÆ溯Êý£¬ÇÒµ±x£¼0ʱ£¬f£¨x£©=2x£¬Ôòf-1(-
14
)
µÄֵΪ
2
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2006•³¯ÑôÇøÈýÄ££©ÔڵȱÈÊýÁÐ{an}ÖУ¬Èôa9=1£¬ÔòÓеÈʽa1a2¡­an=a1a2¡­a17-n£¬£¨n£¼17£¬n¡ÊN*£©³ÉÁ¢£®Àà±ÈÉÏÊöÐÔÖÊ£¬ÏàÓ¦µÄÔڵȲîÊýÁÐ{bn}ÖУ¬Èôb9=0£¬ÔòÓеÈʽ
b1+b2+¡­+bn=b1+b2+¡­+b17-n£¬(n£¼17£¬n¡ÊN*)
b1+b2+¡­+bn=b1+b2+¡­+b17-n£¬(n£¼17£¬n¡ÊN*)
³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2006•³¯ÑôÇøÈýÄ££©ÒÑÖª£ºÔÚÕýÈýÀâÖùABC-A1B1C1ÖУ¬AB=a£¬AA1=2a£¬D¡¢E·Ö±ðÊDzàÀâBB1ºÍAC1µÄÖе㣮
£¨¢ñ£©ÇóÒìÃæÖ±ÏßADÓëA1C1Ëù³É½ÇµÄÓàÏÒÖµ£»
£¨¢ò£©ÇóÖ¤£ºED¡ÍƽÃæACC1A1£»
£¨¢ó£©ÇóƽÃæADC1ÓëƽÃæABCËù³É¶þÃæ½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸