精英家教网 > 高中数学 > 题目详情
14.已知A、B、C、D是空间四个不同的点,求证:AC⊥BD的等价条件是AD2+BC2=CD2+AB2

分析 设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,$\overrightarrow{AD}$=$\overrightarrow{c}$,利用向量,求出相应的等价条件,即可得出结论.

解答 证明:设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,$\overrightarrow{AD}$=$\overrightarrow{c}$,则AC⊥BD的等价条件是$\overrightarrow{b}$•($\overrightarrow{c}$-$\overrightarrow{a}$)=0,
∴$\overrightarrow{a}•\overrightarrow{b}$=$\overrightarrow{b}•\overrightarrow{c}$,
AD2+BC2=CD2+AB2,则$\overrightarrow{{c}^{2}}+(\overrightarrow{b}-\overrightarrow{a})^{2}$=($\overrightarrow{c}$-$\overrightarrow{b}$)2+$\overrightarrow{a}$2
∴$\overrightarrow{a}•\overrightarrow{b}$=$\overrightarrow{b}•\overrightarrow{c}$,
∴AC⊥BD的等价条件是AD2+BC2=CD2+AB2

点评 本题考查空间两条直线的位置关系,考查向量知识的运用,正确运用向量方法是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列各式中,值为$\frac{{\sqrt{3}}}{2}$的是(  )
A.$\sqrt{\frac{{1+cos{{120}°}}}{2}}$B.${cos^2}\frac{π}{12}-{sin^2}\frac{π}{12}$
C.cos42°sin12°-sin42°cos12°D.$\frac{{tan{{15}°}}}{{1-{{tan}^2}{{15}°}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知实数x、y满足2x2+4xy+2y2+x2y2≤9,求u=2$\sqrt{2}$(x+y)+xy的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{2}{si{n}^{2}x}$$+\frac{8}{1+co{s}^{2}x}$的最小值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,圆x2+y2=$\frac{4}{5}$与直线$\frac{x}{a}+\frac{y}{b}=1$相切,O为坐标原点.
(1)求椭圆E的方程;
(2)已知定点Q(t,0)(t>0),斜率为1的直线l过点Q且与椭圆E交于不同的两点C,D,若$\overrightarrow{ON}$=cosθ•$\overrightarrow{OC}$+sinθ•$\overrightarrow{OD}$,且对于任意θ∈[0,2π)总有点N在椭圆E上,求满足条件的实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知平面向量$\overrightarrow{m}$=(2cosx,sinx),$\overrightarrow{n}$=(sinx,2sinx)(x∈R),函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-1.
(1)将函数f(x)的图象向右平移$\frac{π}{6}$个单位长度后得到g(x),求函数g(x)的最小正周期以及对称轴方程;
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.解下列各不等式:
(1)|$\frac{1}{3}$x|≥7;       
(2)|10x|<$\frac{2}{5}$;       
(3)|x-6|<0.1      
(4)3≤|8-x|;
(5)|2x+5|<6;     
(6)|4x-1|≥9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|x2-x<0},B={x|x2+2mx+2m+1<0},A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{OA}$=(3,2),$\overrightarrow{OB}$=(-4,y)并且$\overrightarrow{OB}$⊥$\overrightarrow{OA}$,则|$\overrightarrow{OB}$|=2$\sqrt{13}$.

查看答案和解析>>

同步练习册答案