精英家教网 > 高中数学 > 题目详情

【题目】已知函数若对任意都有成立则实数的取值范围是( )

A.B.C.D.

【答案】D

【解析】

试题求函数f(x)定义域,及f(﹣x)便得到f(x)为奇函数,并能够通过求f′(x)判断f(x)在R上单调递增,从而得到sinθ>m﹣1,也就是对任意的都有sinθ>m﹣1成立,根据0<sinθ≤1,即可得出m的取值范围.

f(x)的定义域为R,f(﹣x)=﹣f(x);

f′(x)=ex+e﹣x>0;

∴f(x)在R上单调递增;

f(sinθ)+f(1﹣m)>0得,f(sinθ)>f(m﹣1);

∴sinθ>m﹣1;

即对任意θ都有m﹣1<sinθ成立;

∵0<sinθ≤1;

∴m﹣1≤0;

实数m的取值范围是(﹣∞,1].

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABC中,内角ABC所对的边分别为abc,已知bcosAasinB)=0,且sinAsinB2sinC成等比数列.

1)求角B

2)若a+cλbλR),求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】研学旅行是研究性学习和旅行体验相结合的校外教育活动,继承和发展了我国传统游学、读万卷书,行万里路的教育理念和人文精神,成为素质教育的新内容和新方式,提升中小学生的自理能力、创新精神和实战能力,是综合实战育人的有效途径,为了了解某校高二年级600名学生在一次研学旅行活动中的武术表演情况,研究人员在该校高二学生中随机抽取了10名学生的武术表演成绩进行统计,统计结果如图所示(满分100分),已知这10名学生或武术表演的平均成绩为85.

1)求m的值;

2)为了研究高二男、女生的武术表演情况,现对该校高二所有学生的武术表演成绩进行分类统计,得到的数据如下表所示:

男生

女生

合计

武术表演成绩超过80

150

武术表演成绩不超过80

100

合计

已知随机抽取这600名学生中的一名学生,抽到武术表演成绩超过80分的学生概率是,根据已知条件完成上面列联表,并据此判断是否有的把握认为武术表演成绩超过80分与性别具有相关性.

参考公式:,其中.

临界值表:

P

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有4个小球,小球上分别写有0123的数字,小球除数字外其他完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回.抽奖活动的奖励规则是:若取出的两个小球上数字之积大于4,则奖励飞机玩具一个;若取出的两个小球上数字之积在区间上,则奖励汽车玩具一个;若取出的两个小球上数字之积小于1,则奖励饮料一瓶.

1)求每对亲子获得飞机玩具的概率;

2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在定义域上的导函数为,若函数没有零点,且,当上与上的单调性相同时,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若的定义域,值域都是,求的值;

2)当时,讨论在区间上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=a1nxax+1aRa≠0).

1)求函数fx)的单调区间;

2)求证:n≥2nN*).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥PABC中,AB1BC2ACPCPAPBE是线段BC的中点.

1)求点C到平面APE的距离d

2)求二面角PEAB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场周年庆,准备提供一笔资金,对消费满一定金额的顾客以参与活动的方式进行奖励.顾客从一个装有大小相同的2个红球和4个黄球的袋中按指定规则取出2个球,根据取到的红球数确定奖励金额,具体金额设置如下表:

取到的红球数

0

1

2

奖励(单位:元)

5

10

50

现有两种取球规则的方案:

方案一:一次性随机取出2个球;

方案二:依次有放回取出2个球.

(Ⅰ)比较两种方案下,一次抽奖获得50元奖金概率的大小;

(Ⅱ)为使得尽可能多的人参与活动,作为公司的负责,你会选择哪种方案?请说明理由.

查看答案和解析>>

同步练习册答案